MCTS: Windows Server 08 Active Directory Configuration Study Guide

Exam 70-640

OBJECTIVE CHAPTER

<table>
<thead>
<tr>
<th>OBJECTIVE</th>
<th>CHAPTER</th>
</tr>
</thead>
<tbody>
<tr>
<td>CONFIGURING DOMAIN NAME SYSTEM (DNS) FOR ACTIVE DIRECTORY</td>
<td></td>
</tr>
<tr>
<td>Configure zones. May include but is not limited to: Dynamic DNS (DDNS), Non-dynamic DNS (NDDNS), and Secure Dynamic DNS (SDDNS); Time to Live (TTL); GlobalNames; Primary, Secondary, Active Directory Integrated, Stub; SOA; zone scavenging; forward lookup; reverse lookup</td>
<td>2</td>
</tr>
<tr>
<td>Configure DNS server settings. May include but is not limited to: forwarding; root hints; configure zone delegation; round robin; disable recursion; debug logging; server scavenging</td>
<td>2</td>
</tr>
<tr>
<td>Configure zone transfers and replication. May include but is not limited to: configure replication scope (forestDNSzone; domainDNSzone); incremental zone transfers; DNS Notify; secure zone transfers; configure name servers; application directory partitions</td>
<td>2, 3</td>
</tr>
<tr>
<td>CONFIGURING THE ACTIVE DIRECTORY INFRASTRUCTURE</td>
<td></td>
</tr>
<tr>
<td>Configure a forest or a domain. May include but is not limited to: remove a domain; perform an unattended installation; Active Directory Migration Tool (ADMT) v3 (pruning and grafting); raise forest and domain functional levels; interoperability with previous versions of Active Directory; alternate user principal name (UPN) suffix; forestprep; domainprep</td>
<td>4, 6, 7</td>
</tr>
<tr>
<td>Configure trusts. May include but is not limited to: forest trust; selective authentication vs. forest-wide authentication; transitive trust; external trust; shortcut trust; SID filtering</td>
<td>4</td>
</tr>
<tr>
<td>Configure sites. May include but is not limited to: create Active Directory subnets; configure site links; configure site link costing; configure sites infrastructure</td>
<td>5</td>
</tr>
<tr>
<td>Configure Active Directory replication. May include but is not limited to: Distributed File System; one-way replication; Bridgehead server; replication scheduling; configure replication protocols; force intersite replication</td>
<td>5</td>
</tr>
<tr>
<td>Configure the global catalog. May include but is not limited to: Universal Group Membership Caching (UGMC); partial attribute set; promote to global catalog</td>
<td>4</td>
</tr>
<tr>
<td>Configure operations masters. May include but is not limited to: seize and transfer; backup operations master; operations master placement; Schema Master; extending the schema; time service</td>
<td>4</td>
</tr>
</tbody>
</table>
OBJECTIVE

CONFIGURING ADDITIONAL ACTIVE DIRECTORY SERVER ROLES

Configure Active Directory Lightweight Directory Service (AD LDS). May include but is not limited to: migration to AD LDS; configure data within AD LDS; configure an authentication server; server core; Windows Server 2008 Hyper-V	6
Configure Active Directory Rights Management Service (AD RMS). May include but is not limited to: certificate request and installation; self-enrollments; delegation; Active Directory Metadirectory Services (AD MDS); Windows Server virtualization	6
Configure the read-only domain controller (RODC). May include but is not limited to: unidirectional replication; Administrator role separation; read-only DNS; BitLocker; credential caching; password replication; syskey; Windows Server virtualization	6
Configure Active Directory Federation Services (AD FS). May include but is not limited to: install AD FS server role; exchange certificate with AD FS agents; configure trust policies; configure user and group claim mapping; Windows Server virtualization	6

CREATING AND MAINTAINING ACTIVE DIRECTORY OBJECTS

Automate creation of Active Directory accounts. May include but is not limited to: bulk import; configure the UPN; create computer, user, and group accounts (scripts, import, migration); template accounts; contacts; distribution lists	7
Maintain Active Directory accounts. May include but is not limited to: configure group membership; account resets; delegation; AGDLP/AGGUDLP; deny domain local group; local vs. domain; Protected Admin; disabling accounts vs. deleting accounts; deprovisioning; contacts; creating organizational units (OUs); delegation of control	7, 9
Create and apply Group Policy objects (GPOs). May include but is not limited to: enforce, OU hierarchy, block inheritance, and enabling user objects; group policy processing priority; WMI; group policy filtering; group policy loopback	7, 8
Configure GPO templates. May include but is not limited to: user rights; ADMX Central Store; administrative templates; security templates; restricted groups; security options; starter GPOs; shell access policies	8
Configure software deployment GPOs. May include but is not limited to: publishing to users; assigning software to users; assigning to computers; software removal	8
Configure account policies. May include but is not limited to: domain password policy; account lockout policy; fine-grain password policies	6, 9

Exam objectives are subject to change at any time without prior notice and at Microsoft’s sole discretion. Please visit Microsoft’s website (www.microsoft.com/learning) for the most current listing of exam objectives.
OBJECTIVE

Configure audit policy by using GPOs. May include but is not limited to: audit logon events; audit account logon events; audit policy change; audit access privilege use; audit directory service access; audit object access

<table>
<thead>
<tr>
<th>MAINTAINING THE ACTIVE DIRECTORY ENVIRONMENT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Configure backup and recovery. May include but is not limited to: using Windows Server Backup; back up files and system state data to media; back up and restore by using removable media; perform an authoritative or non-authoritative Active Directory restore; linked value replication; Directory Services Recovery Mode (DSRM) (reset admin password); back up and restore GPOs</td>
</tr>
<tr>
<td>Perform offline maintenance. May include but is not limited to: offline defragmentation and compaction; Restartable Active Directory; Active Directory database storage allocation</td>
</tr>
<tr>
<td>Monitor Active Directory. May include but is not limited to: Network Monitor; Task Manager; Event Viewer; ReplMon; RepAdmin; Windows System Resource Manager; Reliability and Performance Monitor; Server Performance Advisor; RSOP</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>CONFIGURING ACTIVE DIRECTORY CERTIFICATE SERVICES</th>
</tr>
</thead>
<tbody>
<tr>
<td>Install Active Directory Certificate Services. May include but is not limited to: standalone vs. enterprise; CA hierarchies—root vs. subordinate; certificate requests; certificate practice statement</td>
</tr>
<tr>
<td>Configure CA server settings. May include but is not limited to: key archival; certificate database backup and restore; assigning administration roles</td>
</tr>
<tr>
<td>Manage certificate templates. May include but is not limited to: certificate template types; securing template permissions; managing different certificate template versions; key recovery agent</td>
</tr>
<tr>
<td>Manage enrollments. May include but is not limited to: network device enrollment service (NDES); autoenrollment; Web enrollment; smart card enrollment; creating enrollment agents</td>
</tr>
<tr>
<td>Manage certificate revocations. May include but is not limited to: configure Online Responders; Certificate Revocation List (CRL); CRL Distribution Point (CDP); Authority Information Access (AIA)</td>
</tr>
</tbody>
</table>
MCTS
Windows Server® 2008
Active Directory Configuration
Study Guide
Dear Reader,

Thank you for choosing MCTS: Windows Server 2008 Active Directory Configuration Study Guide (70-640). This book is part of a family of premium quality Sybex books, all written by outstanding authors who combine practical experience with a gift for teaching.

Sybex was founded in 1976. More than thirty years later, we’re still committed to producing consistently exceptional books. With each of our titles we’re working hard to set a new standard for the industry. From the paper we print on, to the authors we work with, our goal is to bring you the best books available.

I hope you see all that reflected in these pages. I’d be very interested to hear your comments and get your feedback on how we’re doing. Feel free to let me know what you think about this or any other Sybex book by sending me an email at nedde@wiley.com, or if you think you’ve found a technical error in this book, please visit http://sybex.custhelp.com. Customer feedback is critical to our efforts at Sybex.

Best regards,

Neil Edde
Vice President and Publisher
Sybex, an Imprint of Wiley
This book is dedicated to my wife, Crystal, and my two daughters, Alexandria and Paige. This book would not have been possible without their love and support.

—Will Panek
Acknowledgments

First and most important I would like to thank my wife, Crystal, and my two daughters, Alexandria and Paige. This book would not have been possible without their love, support, and understanding.

Thanks to my mother and all three of my brothers, Rick, Gary, and Bob. Special thanks to my father, Richard, for who without his extra help financially and his endless motivation, I would not have made it through college many, many, many years ago.

Thanks to my extended family, Bud, Diane (who we lost recently but will be with us forever), Gene, Jen, and Denise. Your love and support has helped make me the person I am today.

Thanks to my friend and business partner Tylor Wentworth for his friendship and laughter. He is always there whenever I need a smile. Thanks to all my friends down at the FD. The best group of brothers and sisters a firefighter could have.

Thanks to my Stellacon family, Jeremy, Jim, Lisa, Mike, Julie, Jesse, and Travis. All of your support over the years has made it fun to go to work everyday.

Thanks to James Chellis for giving me the opportunity to work with him on this project. It is an honor to have my name next to his on this book.

Thanks to Jeff Kellum for helping me through this process and always being there when I needed guidance. Thanks to Stef Jones for the endless hours of editing. It was a pleasure to work with her on this project. Thanks to Rodney Fournier (another geek like me) who is one of the best Tech Editors a writer could ask for, and to Eric Charbonneu for guiding me through to the finish line. Also, I would like to thank all the other editors and staff at Wiley who helped to make this book better. I feel fortunate to have been able to work with all of you.

Finally, I would like to thank one of the funniest and most knowledgeable individuals (even though he’s a Cisco guy) that I have ever had the pleasure to work with and call a friend, Todd Lammle. Without Todd’s help and guidance, this book would not have been possible.

—Will Panek
About the Authors

After many successful years in the computer industry and a degree in computer programming, William Panek decided that he could better use his talents and his personality as an instructor. He started teaching for The Associates – instructing at such schools as Boston University, Clark University, and Globalnet, just to name a few. In 1998 William started Stellacon Corporation. Stellacon has become one of New England’s leading training companies. He brings years of real world expertise to the classroom and strives to ensure that each and every student has an understanding of the course material. William has helped thousands of students get certified over his 10 years of teaching experience.

William currently resides in New Hampshire with his wife and their two daughters. In his spare time he is a commercially rated helicopter pilot and volunteer fire fighter.

James Chellis, MCSE, has co-authored more than 30 IT certification titles in print. He is currently CEO of Comcourse, Inc., an online education provider.
Contents at a Glance

Introduction xxxv

Assessment Test xxxvi

<table>
<thead>
<tr>
<th>Chapter</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chapter 1</td>
<td>Overview of Active Directory</td>
<td>1</td>
</tr>
<tr>
<td>Chapter 2</td>
<td>Domain Name System (DNS)</td>
<td>43</td>
</tr>
<tr>
<td>Chapter 3</td>
<td>Planning and Installation of Active Directory</td>
<td>107</td>
</tr>
<tr>
<td>Chapter 4</td>
<td>Installing and Managing Trees and Forests</td>
<td>147</td>
</tr>
<tr>
<td>Chapter 5</td>
<td>Configuring Sites and Replication</td>
<td>197</td>
</tr>
<tr>
<td>Chapter 6</td>
<td>Configuring Active Directory Server Roles</td>
<td>243</td>
</tr>
<tr>
<td>Chapter 7</td>
<td>Administering Active Directory</td>
<td>295</td>
</tr>
<tr>
<td>Chapter 8</td>
<td>Configuring Group Policy Objects</td>
<td>351</td>
</tr>
<tr>
<td>Chapter 9</td>
<td>Planning Security for Active Directory</td>
<td>417</td>
</tr>
<tr>
<td>Chapter 10</td>
<td>Active Directory Optimization and Reliability</td>
<td>473</td>
</tr>
<tr>
<td>Appendix A</td>
<td>About the Companion CD</td>
<td>535</td>
</tr>
<tr>
<td>Glossary</td>
<td></td>
<td>539</td>
</tr>
<tr>
<td>Index</td>
<td></td>
<td>553</td>
</tr>
</tbody>
</table>
Contents

Introduction xxv

Assessment Test xxxvi

Chapter 1 Overview of Active Directory 1

The Industry before Active Directory 3

The Windows NT 4 Domain Model 3

The Limitations of Windows NT 4 5

The Benefits of Active Directory 7

Understanding Active Directory’s Logical Structure 11

Components and Mechanisms of Active Directory 11

An Overview of Active Directory Domains 13

Overview of an Active Directory Forest 15

Understanding Active Directory Objects 17

Names and Identifiers of Objects 17

Using Organizational Units (OUs) in Active Directory 19

Security Features of User, Computer, and Group Objects 21

Delegation of Administrative Control 22

Introducing Windows Server 2008 Server Roles 23

Active Directory Certificate Services 24

Active Directory Domain Services 25

Active Directory Federation Services 26

Active Directory Lightweight Directory Services 27

Active Directory Rights Management Services 27

Introducing Identity and Access (IDA) in Windows Server 2008 28

Using Directory Services 30

Strong Authentication 30

Federated Identities 31

Information Protection 31

Identity Lifecycle Management 32

Summary 33

Exam Essentials 34

Key Terms 35

Review Questions 36

Answers to Review Questions 40

Chapter 2 Domain Name System (DNS) 43

Introducing DNS 44

The Form of an IP Address 45

Understanding Servers, Clients, and Resolvers 50

Understanding the DNS Process 51
Introducing DNS Database Zones 57
Understanding Primary Zones 58
Understanding Secondary Zones 59
Understanding Active Directory Integrated DNS 60
Understanding Stub Zones 62
Zone Transfers and Replication 63
New Functionality in Windows Server 2008 DNS 67
 Background Zone Loading 67
 Support for IPv6 Addresses 67
 Support for Read-Only Domain Controllers 68
 GlobalName Zones 68
Introducing DNS Record Types 68
 Start of Authority (SOA) Records 69
 Name Server (NS) Records 70
 Host Record 71
 Alias Record 71
 Pointer (PTR) Record 72
 Mail Exchanger (MX) Record 72
 Service (SRV) Record 73
Configuring DNS 74
 Installing DNS 74
 Load Balancing with Round Robin 75
 Configuring a Caching-Only Server 75
 Setting Zone Properties 76
 Configuring Zones for Dynamic Updates 80
 Delegating Zones for DNS 81
 Manually Creating DNS Records 82
Monitoring and Troubleshooting DNS 85
 Monitoring and Troubleshooting DNS 85
 Monitoring DNS with the DNS Snap-In 85
 Troubleshooting DNS 87
Summary 95
Exam Essentials 95
Review Questions 97
Answers to Review Questions 104

Chapter 3 Planning and Installation of Active Directory 107
Verifying the Filesystem 108
 Setting Up the NTFS Partition 110
Verifying Network Connectivity 112
 Basic Connectivity Tests 112
 Tools and Techniques for Testing Network Configuration 113
Understanding Domain and Forest Functionality 115
 About the Domain Functional Level 115
 About Forest Functionality 116
Chapter 4 Installing and Managing Trees and Forests 147

Reasons for Creating Multiple Domains 148
 Reasons for Using Multiple Domains 148
 Drawbacks of Multiple Domains 150
Creating Domain Trees and Forests 151
 Planning Trees and Forests 151
 The Promotion Process 155
 Creating a Domain Tree 156
 Joining a New Domain Tree to a Forest 162
 Adding Additional Domain Controllers 167
Demoting a Domain Controller 168
Managing Multiple Domains 171
 Managing Single Master Operations 171
 Forest Operations Masters 171
 Domain Operations Masters 172
 Assigning Single-Master Roles 173
 Managing Trusts 175
 Managing UPN Suffixes 181
 Managing Global Catalog Servers 182
 Managing Universal Group Membership Caching 184
Summary 186
Exam Essentials 186
Review Questions 188
Answers to Review Questions 194
Contents

Chapter 5 Configuring Sites and Replication 197
- Overview of Network Planning 198
 - The Three Types of Network 198
 - Exploring Network Constraints 199
- Overview of Active Directory Replication and Sites 200
 - Replicating Active Directory 200
 - Understanding Active Directory Site Concepts 201
- Implementing Sites and Subnets 205
 - Creating Sites 206
 - Creating Subnets 209
 - Configuring Sites 212
- Configuring Replication 214
 - Intrasite Replication 215
 - Intersite Replication 215
 - Configuring Server Topology 225
- Monitoring and Troubleshooting Active Directory Replication 226
 - About System Monitor 228
 - Troubleshooting Replication 228
- Summary 231
- Exam Essentials 231
- Review Questions 233
- Answers to Review Questions 240

Chapter 6 Configuring Active Directory Server Roles 243
- Understanding Server Manager 245
- Configuring Active Directory Certificate Services 246
 - Installing Active Directory Certificate Services 247
 - Enrolling User and Computer Certificates 255
 - Revoking Certificates 261
 - Configuring Additional CA Server Settings 263
- Understanding Active Directory Domain Services 266
 - Introducing the New Domain Services Features in Windows Server 2008 266
 - Security Features Available for Domain Services 267
- Active Directory Federation Services 268
 - Installing AD FS 269
 - Configuring AD FS 273
- Active Directory Lightweight Directory Services 273
 - Installing AD LDS 273
 - Configuring AD LDS 275
- Active Directory Rights Management Services 281
- Summary 287
- Exam Essentials 288
Chapter 7 Administering Active Directory 295

An Overview of OUs 296
 The Purpose of OUs 297
 Benefits of OUs 298
Planning the OU Structure 298
 Logical Grouping of Resources 298
 Understanding OU Inheritance 300
 Delegating Administrative Control 301
 Applying Group Policies 302
Creating OUs 303
Managing OUs 306
 Moving, Deleting, and Renaming OUs 307
 Administering Properties of OUs 308
 Delegating Control of OUs 309
Troubleshooting OUs 314
Creating and Managing Active Directory Objects 314
 Overview of Active Directory Objects 314
 Managing Object Properties 321
 Understanding Groups 324
 Filtering and Advanced Active Directory Features 326
 Moving, Renaming, and Deleting Active Directory Objects 328
 Resetting an Existing Computer Account 329
Publishing Active Directory Objects 330
 Making Active Directory Objects Available to Users 330
 Publishing Printers 330
 Publishing Shared Folders 334
 Querying Active Directory 336
Summary 338
Exam Essentials 339
Review Questions 340
Answers to Review Questions 348

Chapter 8 Configuring Group Policy Objects 351

Introducing Group Policy 352
 Understanding Group Policy Settings 353
 Group Policy Objects 355
 Group Policy Inheritance 356
Planning a Group Policy Strategy 357
Implementing Group Policy 358
 Creating GPOs 358
 Linking Existing GPOs to Active Directory 364
Contents

Managing Group Policy 365
 Managing GPOs 365
 Security Filtering of a Group Policy 366
 Delegating Administrative Control of GPOs 370
 Controlling Inheritance and Filtering Group Policy 373
 Assigning Script Policies 375
 Managing Network Configuration 376
 Automatically Enrolling User and Computer Certificates in Group Policy 377
 Redirecting Folders 380

Deploying Software through a GPO 383
 The Software Management Life Cycle 383
 The Windows Installer 385
 Deploying Applications 389

Implementing Software Deployment 390
 Preparing for Software Deployment 390
 Publishing and Assigning Applications 391
 Applying Software Updates 394
 Verifying Software Installation 396
 Configuring Automatic Updates in Group Policy 396

Configuring Software Deployment Settings 397
 The Software Installation Properties Dialog Box 397
 Removing Programs 400
 Microsoft Windows Installer Settings 401

Troubleshooting Group Policies 402
 RSoP in Logging Mode 403
 RSoP in Planning Mode 406
 Using the gpresult.exe Command 406

Summary 407

Exam Essentials 408

Review Questions 410
Answers to Review Questions 415

Chapter 9 Planning Security for Active Directory 417

Active Directory Security Overview 419
 Understanding Security Principals 419
 Managing Security and Permissions 429
 Using ACLs and ACEs 430

Implementing Active Directory Security 432
 Using User Templates 435
 Delegating Control of Users and Groups 437
 Using Group Policy for Security 439
Contents

Understanding Smart Card Authentication 443
Preparation of a Smart Card Certificate Enrollment Station 444
Writing Certificate Information onto Smart Cards 446
Configuring Group Policy Settings for Smart Cards 446
Understanding Security Configuration and Analysis Tools 448
Using the Security Configuration And Analysis Utility 448
Understanding the secedit.exe Command 452
Implementing an Audit Policy 455
Overview of Auditing 456
Implementing Auditing 456
Viewing Auditing Information 459
Summary 461
Exam Essentials 462
Review Questions 463
Answers to Review Questions 470

Chapter 10 Active Directory Optimization and Reliability 473
Overview of Windows Server 2008 Performance Monitoring 475
Using Windows Server 2008 Performance Tools 477
Deciding What to Monitor 478
Viewing Performance Information 480
Managing Performance Monitor Properties 482
Saving and Analyzing Data with Performance Logs and Alerts 485
Monitoring and Troubleshooting Active Directory Components 487
Monitoring Domain Controller Performance 488
Monitoring Active Directory Performance with Performance Monitor 490
Using Other Performance Monitoring Tools 496
Troubleshooting Active Directory Performance Monitoring 503
Backup and Recovery of Active Directory 503
Overview of the Windows Server 2008 Backup Utility 505
Backing Up Active Directory 509
Restoring Active Directory 515
Offline Maintenance with ntdsutil.exe 523
Monitoring Replication 523
Summary 525
Exam Essentials 526
Review Questions 527
Answers to Review Questions 533
<table>
<thead>
<tr>
<th>Appendix A</th>
<th>About the Companion CD</th>
</tr>
</thead>
<tbody>
<tr>
<td>What You’ll Find on the CD</td>
<td>536</td>
</tr>
<tr>
<td>Sybex Test Engine</td>
<td>536</td>
</tr>
<tr>
<td>PDF of the Book</td>
<td>536</td>
</tr>
<tr>
<td>Adobe Reader</td>
<td>536</td>
</tr>
<tr>
<td>Electronic Flashcards</td>
<td>537</td>
</tr>
<tr>
<td>System Requirements</td>
<td>537</td>
</tr>
<tr>
<td>Using the CD</td>
<td>537</td>
</tr>
<tr>
<td>Troubleshooting</td>
<td>538</td>
</tr>
<tr>
<td>Customer Care</td>
<td>538</td>
</tr>
</tbody>
</table>

| **Glossary** | 539 |

| **Index** | 553 |
Table of Exercises

Exercise 2.1 Installing and Configuring the DNS Service 74
Exercise 2.2 Configuring a Zone for Dynamic Update 80
Exercise 2.3 Creating a Delegated DNS Zone 81
Exercise 2.4 Manually Creating DNS RRs 83
Exercise 2.5 Simple DNS Testing . 86
Exercise 2.6 Using the nslookup Command 91
Exercise 3.1 Viewing Disk Configuration 111
Exercise 3.2 Promoting a Domain Controller 119
Exercise 3.3 Viewing the Active Directory Event Log 124
Exercise 3.4 Joining a Computer to an Active Directory Domain . . . 129
Exercise 3.5 Configuring DNS Integration with Active Directory . . . 136
Exercise 4.1 Creating a New Subdomain 156
Exercise 4.2 Creating a New Domain Tree in the Forest 163
Exercise 4.3 Assigning Single-Master Operations 173
Exercise 4.4 Managing Trust Relationships 177
Exercise 4.5 Adding a UPN Suffix . 182
Exercise 4.6 Managing GC Servers . 183
Exercise 4.7 Managing Universal Group Membership Caching 185
Exercise 5.1 Creating Sites . 207
Exercise 5.2 Creating Subnets . 210
Exercise 5.3 Configuring Sites . 212
Exercise 5.4 Creating Site Links and Site Link Bridges 218
Exercise 5.5 Moving Server Objects between Sites 223
Exercise 6.1 Installing Active Directory Certificate Services 248
Exercise 6.2 Configuring Certificate Autoenrollment 257
Exercise 6.3 Request a Certificate Using Your Web Browser 258
Exercise 6.4 Revoking a Certificate . 262
Exercise 6.5 Backing Up the Certificate Authority Server 263
Exercise 6.6 Installing the AD FS . 269
Exercise 6.7 Installing the AD LDS . 274
Exercise 6.8 Configuring an AD LDS Instance 276
Exercise 6.9 Installing the AD RMS . 282
Exercise 7.1 Creating an OU Structure . 304
Table of Exercises

<table>
<thead>
<tr>
<th>Exercise</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.2</td>
<td>Modifying OU Structure</td>
<td>307</td>
</tr>
<tr>
<td>7.3</td>
<td>Using the Delegation of Control Wizard</td>
<td>310</td>
</tr>
<tr>
<td>7.4</td>
<td>Delegating Custom Tasks</td>
<td>311</td>
</tr>
<tr>
<td>7.5</td>
<td>Creating Active Directory Objects</td>
<td>316</td>
</tr>
<tr>
<td>7.6</td>
<td>Managing Object Properties</td>
<td>322</td>
</tr>
<tr>
<td>7.7</td>
<td>Moving Active Directory Objects</td>
<td>328</td>
</tr>
<tr>
<td>7.8</td>
<td>Resetting an Existing Computer Account</td>
<td>329</td>
</tr>
<tr>
<td>7.9</td>
<td>Creating and Publishing a Printer</td>
<td>331</td>
</tr>
<tr>
<td>7.10</td>
<td>Creating and Publishing a Shared Folder</td>
<td>334</td>
</tr>
<tr>
<td>7.11</td>
<td>Finding Objects in Active Directory</td>
<td>336</td>
</tr>
<tr>
<td>8.1</td>
<td>Creating a Group Policy Object Using the GPMC</td>
<td>359</td>
</tr>
<tr>
<td>8.2</td>
<td>Linking Existing GPOs to Active Directory</td>
<td>364</td>
</tr>
<tr>
<td>8.3</td>
<td>Filtering Group Policy Using Security Groups</td>
<td>367</td>
</tr>
<tr>
<td>8.4</td>
<td>Delegating Administrative Control of Group Policy</td>
<td>370</td>
</tr>
<tr>
<td>8.5</td>
<td>Configuring Automatic Certificate Enrollment in Group Policy</td>
<td>379</td>
</tr>
<tr>
<td>8.6</td>
<td>Configuring Folder Redirection in Group Policy</td>
<td>381</td>
</tr>
<tr>
<td>8.7</td>
<td>Creating a Software Deployment Share</td>
<td>390</td>
</tr>
<tr>
<td>8.8</td>
<td>Publishing and Assigning Applications Using Group Policy</td>
<td>391</td>
</tr>
<tr>
<td>8.9</td>
<td>Applying Software Updates</td>
<td>394</td>
</tr>
<tr>
<td>9.1</td>
<td>Creating and Managing Users and Groups</td>
<td>432</td>
</tr>
<tr>
<td>9.2</td>
<td>Creating and Using User Templates</td>
<td>435</td>
</tr>
<tr>
<td>9.3</td>
<td>Delegating Control of Active Directory Objects</td>
<td>437</td>
</tr>
<tr>
<td>9.4</td>
<td>Applying Security Policies by Using Group Policy</td>
<td>441</td>
</tr>
<tr>
<td>9.5</td>
<td>Installing a Certificate for a Smart Card Enrollment Station</td>
<td>444</td>
</tr>
<tr>
<td>9.6</td>
<td>Setting Up a Smart Card for User Logon</td>
<td>446</td>
</tr>
<tr>
<td>9.7</td>
<td>Configuring Group Policy to Require Smart Card Logon</td>
<td>447</td>
</tr>
<tr>
<td>9.8</td>
<td>Using the Security Configuration And Analysis Utility</td>
<td>449</td>
</tr>
<tr>
<td>9.9</td>
<td>Enabling Auditing of Active Directory Objects</td>
<td>457</td>
</tr>
<tr>
<td>9.10</td>
<td>Enabling Auditing for a Specific OU</td>
<td>458</td>
</tr>
<tr>
<td>9.11</td>
<td>Generating and Viewing Audit Logs</td>
<td>459</td>
</tr>
<tr>
<td>10.1</td>
<td>Monitoring Domain Controller and Active Directory Performance with Windows Server 2008 Performance Monitor</td>
<td>491</td>
</tr>
<tr>
<td>10.2</td>
<td>Backing Up Active Directory</td>
<td>510</td>
</tr>
<tr>
<td>10.3</td>
<td>Restoring the System State and Active Directory</td>
<td>517</td>
</tr>
</tbody>
</table>
Introduction

Microsoft has recently changed its certification program to contain three primary series: Technology, Professional, and Architect. The Technology Series of certifications are intended to allow candidates to target specific technologies and are the basis for obtaining the Professional Series and Architect Series of certifications. The certifications contained within the Technology Series consist of one to three exams, focus on a specific technology, and do not include job-role skills. By contrast, the Professional Series of certifications focus on a job role and are not necessarily focused on a single technology, but rather a comprehensive set of skills for performing the job role being tested. The Architect Series of certifications offered by Microsoft are premier certifications that consist of passing a review board consisting of previously certified architects. To apply for the Architect Series of certifications, you must have a minimum of 10 years of industry experience.

When obtaining a Technology Series certification, you are recognized as a Microsoft Certified Technology Specialist (MCTS) on the specific technology or technologies that you have been tested on. The Professional Series certifications include Microsoft Certified IT Professional (MCITP) and Microsoft Certified Professional Developer (MCPD). Passing the review board for an Architect Series certification will allow you to become a Microsoft Certified Architect (MCA).

This book has been developed to give you the critical skills and knowledge you need to prepare for the exam requirement for obtaining the MCTS: Windows Server 2008 Active Directory, Configuring (Exam 70-640).

The Microsoft Certified Professional Program

Since the inception of its certification program, Microsoft has certified more than 2 million people. As the computer network industry continues to increase in both size and complexity, this number is sure to grow—and the need for proven ability will also increase. Certifications can help companies verify the skills of prospective employees and contractors.

Microsoft has developed its Microsoft Certified Professional (MCP) program to give you credentials that verify your ability to work with Microsoft products effectively and professionally. Several levels of certification are available based on specific suites of exams. Microsoft has recently created a new generation of certification programs:

Microsoft Certified Technology Specialist (MCTS) The MCTS can be considered the entry-level certification for the new generation of Microsoft certifications. The MCTS certification program targets specific technologies instead of specific job roles. You must take and pass one to three exams.

Microsoft Certified IT Professional (MCITP) The MCITP certification is a Professional Series certification that tests network and systems administrators on job roles, rather than only on a specific technology. The MCITP generally consists of passing one to three exams, in addition to obtaining an MCTS-level certification.
Microsoft Certified Professional Developer (MCPD) The MCPD certification is a Professional Series certification for application developers. Similar to the MCITP, the MCPD is focused on a job role rather than on a single technology. The MCPD generally consists of passing one to three exams, in addition to obtaining an MCTS-level certification.

Microsoft Certified Architect (MCA) The MCA is Microsoft’s premier certification series. Obtaining the MCA requires a minimum of 10 years of experience and requires the candidate to pass a review board consisting of peer architects.

How Do You Become Certified on Windows Server 2008 Active Directory?

Attaining a Microsoft certification has always been a challenge. In the past, students have been able to acquire detailed exam information—even most of the exam questions—from online “brain dumps” and third-party “cram” books or software products. For the new generation of exams, this is simply not the case.

Microsoft has taken strong steps to protect the security and integrity of its new certification tracks. Now prospective candidates must complete a course of study that develops detailed knowledge about a wide range of topics. It supplies them with the true skills needed, derived from working with the technology being tested.

The new generations of Microsoft certification programs are heavily weighted toward hands-on skills and experience. It is recommended that candidates have troubleshooting skills acquired through hands-on experience and working knowledge.

Fortunately, if you are willing to dedicate the time and effort to learn Windows Server 2008 Active Directory, you can prepare yourself well for the exam by using the proper tools. By working through this book, you can successfully meet the exam requirements to pass the Windows Server 2008 Active Directory exam.

This book is part of a complete series of Microsoft certification Study Guides, published by Sybex Inc., that together cover the new MCTS, MCITP, MCPD exams, as well as the core MCSA and MCSE operating system requirements. Please visit the Sybex website at www.sybex.com for complete program and product details.

MCTS Exam Requirements

Candidates for MCTS certification on Windows Server 2008 Active Directory must pass one Windows Server 2008 Active Directory exam. Other MCTS certifications may require up to three exams. For a more detailed description of the Microsoft certification programs, including a list of all the exams, visit the Microsoft Learning Web site at www.microsoft.com/learning/mcp.

The Windows Server 2008 Active Directory, Configuring Exam

This exam is quite specific regarding Windows Server 2008 Active Directory requirements and operational settings, and it can be particular about how administrative tasks are performed within Active Directory.

Microsoft provides exam objectives to give you a general overview of possible areas of coverage on the Microsoft exams. Keep in mind, however, that exam objectives are subject to change at any time without prior notice and at Microsoft’s sole discretion. Please visit the Microsoft Learning Web site (www.microsoft.com/learning/mcp) for the most current listing of exam objectives.

Types of Exam Questions

In an effort to both refine the testing process and protect the quality of its certifications, Microsoft has focused its newer certification exams on real experience and hands-on proficiency. There is a greater emphasis on your past working environments and responsibilities and less emphasis on how well you can memorize. In fact, Microsoft says that certification candidates should have hands-on experience before attempting to pass any certification exams.

Microsoft will accomplish its goal of protecting the exams’ integrity by regularly adding and removing exam questions, limiting the number of questions that any individual sees in a beta exam, limiting the number of questions delivered to an individual by using adaptive testing, and adding new exam elements.

Exam questions may be in a variety of formats: Depending on which exam you take, you’ll see multiple-choice questions, as well as select-and-place and prioritize-a-list questions. Simulations and case study–based formats are included as well. You may also find yourself taking what’s called an adaptive format exam. Let’s take a look at the types of exam questions and examine the adaptive testing technique, so you’ll be prepared for all of the possibilities.

The Microsoft Windows Server 2008 exams provided a detailed score breakdown. This is because of the various and complex question formats. Previously, each question focused on one objective. Recent exams, such as the Windows Server 2008 Active Directory exam, however, contain questions that may be tied to one or more objectives from one or more objective sets. Therefore, grading by objective is almost impossible. Also, Microsoft no longer offers a score. Now you will only be told if you pass or fail.
Multiple-Choice Questions

Multiple-choice questions come in two main forms. One is a straightforward question followed by several possible answers, of which one or more is correct. The other type of multiple-choice question is more complex and based on a specific scenario. The scenario may focus on several areas or objectives.

Select-and-Place Questions

Select-and-place exam questions involve graphical elements that you must manipulate to successfully answer the question. For example, you might see a diagram of a computer network, as shown in the following graphic taken from the select-and-place demo downloaded from Microsoft’s website.

A typical diagram will show computers and other components next to boxes that contain the text “Place here.” The labels for the boxes represent various computer roles on a network, such as a print server and a file server. Based on information given for each computer, you are asked to select each label and place it in the correct box. You need to place all of the labels correctly. No credit is given for the question if you correctly label only some of the boxes.

In another select-and-place problem you might be asked to put a series of steps in order, by dragging items from boxes on the left to boxes on the right, and placing them in the correct order. One other type requires that you drag an item from the left and place it under an item in a column on the right.
Simulations

Simulations are the kinds of questions that most closely represent actual situations and test the skills you use while working with Microsoft software interfaces. These exam questions include a mock interface on which you are asked to perform certain actions according to a given scenario. The simulated interfaces look nearly identical to what you see in the actual product, as shown in this example:

Because of the number of possible errors that can be made on simulations, be sure to consider the following recommendations from Microsoft:

- Do not change any simulation settings that don’t pertain to the solution directly.
- When related information has not been provided, assume that the default settings are used.
- Make sure that your entries are spelled correctly.
- Close all the simulation application windows after completing the set of tasks in the simulation.
The best way to prepare for simulation questions is to spend time working with the graphical interface of the product on which you will be tested.

Case Study–Based Questions

Case study–based questions first appeared in the MCSD program. These questions present a scenario with a range of requirements. Based on the information provided, you answer a series of multiple-choice and select-and-place questions. The interface for case study–based questions has a number of tabs, each of which contains information about the scenario. At present, this type of question appears only in most of the Design exams.

Microsoft will regularly add and remove questions from the exams. This is called *item seeding*. It is part of the effort to make it more difficult for individuals to merely memorize exam questions that were passed along by previous test-takers.

Tips for Taking the MCTS: Windows Server 2008 Active Directory, Configuring Exam

Here are some general tips for achieving success on your certification exam:

- Arrange early at the exam center so that you can relax and review your study materials. During this final review, you can look over tables and lists of exam-related information.
- Read the questions carefully. Don’t be tempted to jump to an early conclusion. Make sure you know exactly what the question is asking.
- Answer all questions. If you are unsure about a question, then mark the question for review and come back to the question at a later time.
- On simulations, do not change settings that are not directly related to the question. Also, assume default settings if the question does not specify or imply which settings are used.
- For questions you’re not sure about, use a process of elimination to get rid of the obviously incorrect answers first. This improves your odds of selecting the correct answer when you need to make an educated guess.

Exam Registration

You may take the Microsoft exams at any of more than 1,000 Authorized Prometric Testing Centers (APTCs) around the world. For the location of a testing center near you, call Prometric at 800-755-EXAM (755-3926). Outside the United States and Canada, contact your local Prometric registration center.

Find out the number of the exam you want to take, and then register with the Prometric registration center nearest to you. At this point, you will be asked for advance payment for the
The exams are $125 each and you must take them within one year of payment. You can schedule exams up to six weeks in advance or as late as one working day prior to the date of the exam. You can cancel or reschedule your exam if you contact the center at least two working days prior to the exam. Same-day registration is available in some locations, subject to space availability. Where same-day registration is available, you must register a minimum of two hours before test time.

You may also register for your exams online at www.prometric.com.

When you schedule the exam, you will be provided with instructions regarding appointment and cancellation procedures, ID requirements, and information about the testing center location. In addition, you will receive a registration and payment confirmation letter from Prometric.

Microsoft requires certification candidates to accept the terms of a Non-Disclosure Agreement before taking certification exams.

Is This Book for You?

If you want to acquire a solid foundation in Windows Server 2008 Active Directory, and your goal is to prepare for the exam by learning how to use and manage the new operating system, this book is for you. You’ll find clear explanations of the fundamental concepts you need to grasp and plenty of help to achieve the high level of professional competency you need to succeed in your chosen field.

If you want to become certified as an MCTS, this book is definitely for you. However, if you just want to attempt to pass the exam without really understanding Windows Server 2008 Active Directory, this Study Guide is not for you. It is written for people who want to acquire hands-on skills and in-depth knowledge of Windows Server 2008 Active Directory.

What’s in the Book?

What makes a Sybex Study Guide the book of choice for hundreds of thousands of MCPs? We took into account not only what you need to know to pass the exam, but what you need to know to take what you’ve learned and apply it in the real world. Each book contains the following:

Objective-by-objective coverage of the topics you need to know Each chapter lists the objectives covered in that chapter.

The topics covered in this Study Guide map directly to Microsoft’s official exam objectives. Each exam objective is covered completely.
Introduction

Assessment Test Directly following this introduction is an Assessment Test that you should take. It is designed to help you determine how much you already know about Windows Server 2008 Active Directory. Each question is tied to a topic discussed in the book. Using the results of the Assessment Test, you can figure out the areas where you need to focus your study. Of course, we do recommend you read the entire book.

Exam Essentials To highlight what you learn, you’ll find a list of Exam Essentials at the end of each chapter. The Exam Essentials section briefly highlights the topics that need your particular attention as you prepare for the exam.

Glossary Throughout each chapter, you will be introduced to important terms and concepts that you will need to know for the exam. These terms appear in italic within the chapters, and at the end of the book, a detailed Glossary gives definitions for these terms, as well as other general terms you should know.

Review questions, complete with detailed explanations Each chapter is followed by a set of Review Questions that test what you learned in the chapter. The questions are written with the exam in mind, meaning that they are designed to have the same look and feel as what you’ll see on the exam. Question types are just like the exam, including multiple choice, exhibits, and select-and-place.

Hands-on exercises In each chapter (with the exception of Chapter 1, which is more an introduction to Active Directory) you’ll find exercises designed to give you the important hands-on experience that is critical for your exam preparation. The exercises support the topics of the chapter, and they walk you through the steps necessary to perform a particular function.

Real World Scenarios Because reading a book isn’t enough for you to learn how to apply these topics in your everyday duties, we have provided Real World Scenarios in special sidebars. These explain when and why a particular solution would make sense, in a working environment you’d actually encounter.

Interactive CD Every Sybex Study Guide comes with a CD complete with additional questions, flashcards for use with an interactive device, and the book in electronic format. Details are in the following section.

What’s on the CD?

With this new member of our best-selling Study Guide series, we are including quite an array of training resources. The CD offers bonus exams and flashcards to help you study for the exam. We have also included the complete contents of the Study Guide in electronic form. The CD’s resources are described here:

The Sybex E-book for Windows Server 2008 Active Directory Many people like the convenience of being able to carry their whole Study Guide on a CD. They also like being able to search the text via computer to find specific information quickly and easily. For these reasons,
the entire contents of this Study Guide are supplied on the CD, in PDF. We’ve also included Adobe Acrobat Reader, which provides the interface for the PDF contents as well as the search capabilities.

The Sybex Test Engine This is a collection of multiple-choice questions that will help you prepare for your exam. There are four sets of questions:

- Two bonus exams designed to simulate the actual live exam.
- All the questions from the Study Guide, presented in a test engine for your review. You can review questions by chapter, or you can take a random test.
- The Assessment Test.

Here is a sample screen from the Sybex Test Engine:

![Sample Sybex Test Engine screen](image)

Sybex Flashcards for PCs and Handheld Devices The “flashcard” style of question offers an effective way to quickly and efficiently test your understanding of the fundamental concepts covered in the exam. The Sybex Flashcards set consists of 100 questions presented in a special
engine developed specifically for this Study Guide series. Here’s what the Sybex Flashcards interface looks like:

Because of the high demand for a product that will run on handheld devices, we have also developed, in conjunction with Land-J Technologies, a version of the flashcard questions that you can take with you on your Palm OS PDA (including the PalmPilot and Handspring’s Visor).

Hardware and Software Requirements

You should verify that your computer meets the minimum requirements for installing Windows Server 2008 as listed in Chapter 2, “Domain Name System.” We suggest that your computer meets or exceeds the recommended requirements for a more enjoyable experience.

The exercises in this book assume that your computer is configured in a specific manner. Your computer should have at least a 20GB drive that is configured with the minimum space requirements and partitions. Other exercises in this book assume that your computer is configured as follows:

- 20GB C: partition with the NTFS filesystem
- Optional D: partition with the NTFS filesystem
- 15GB or more of free space

Of course, you can allocate more space to your partitions if it is available.
The first exercise in the book assumes that you have installed Windows Server 2008 and that your partitions have already been created and formatted as previously specified.

Contacts and Resources

To find out more about Microsoft Education and Certification materials and programs, to register with Prometric, or to obtain other useful certification information and additional study resources, check the following resources:

Microsoft Learning Home Page
www.microsoft.com/learning
This website provides information about the MCP program and exams. You can also order the latest Microsoft Roadmap to Education and Certification.

Microsoft TechNet Technical Information Network
www.microsoft.com/technet
800-344-2121
Use this website or phone number to contact support professionals and system administrators. Outside the United States and Canada, contact your local Microsoft subsidiary for information.

Prometric
www.prometric.com
800-755-3936
Contact Prometric to register to take an exam at any of more than 800 Prometric Testing Centers around the world.

MCP Magazine Online
www.mcpmag.com
Microsoft Certified Professional Magazine is a well-respected publication that focuses on Windows certification. This site hosts chats and discussion forums and tracks news related to the MCTS and MCITP program. Some of the services cost a fee, but they are well worth it.

WindowsITPro Magazine
www.windowsITPro.com
You can subscribe to this magazine or read free articles at the website. The study resource provides general information on Windows Vista, Server, and .NET Server.
Assessment Test

1. Which of the following operations is not supported by Active Directory?
 A. Assigning applications to users
 B. Assigning applications to computers
 C. Publishing applications to users
 D. Publishing applications to computers

2. Which of the following single master operations apply to the entire forest? (Choose all that apply.)
 A. Schema Master
 B. Domain Naming Master
 C. RID Master
 D. Infrastructure Master

3. Which of the following is not a valid Active Directory object?
 A. User
 B. Group
 C. Organizational unit
 D. Computer
 E. None of the above

4. Which of the following pieces of information should you have before you begin the Active Directory Installation Wizard? (Choose all that apply.)
 A. Active Directory domain name
 B. Administrator password for the local computer
 C. NetBIOS name for the server
 D. DNS configuration information

5. Which of the following is not considered a security principal?
 A. Users
 B. Security groups
 C. Distribution groups
 D. Computers

6. Which of the following is a valid role for a Windows Server 2008 computer?
 A. Stand-alone server
 B. Member server
 C. Domain controller
 D. All of the above
7. Trust relationships can be configured as which of the following? (Choose all that apply.)
 A. One-way and transitive
 B. Two-way and transitive
 C. One-way and nontransitive
 D. Two-way and nontransitive

8. Which of the following should play the least significant role in planning an OU structure?
 A. Network infrastructure
 B. Domain organization
 C. Delegation of permissions
 D. Group Policy settings

9. Which of the following file extensions is used primarily for Windows Installer setup programs?
 A. .msi
 B. .mst
 C. .zap
 D. .aas

10. How can the Windows NT 4 file and printer resources be made available from within Active Directory?
 A. A systems administrator can right-click the resource and select Publish.
 B. A systems administrator can create Printer and Shared Folder objects that point to these resources.
 C. The Active Directory Domains And Trusts tool can be used to make resources available.
 D. Only resources on a Windows 2000 or above server can be accessed from within Active Directory.

11. An Active Directory environment consists of three domains. What is the maximum number of sites that can be created for this environment?
 A. 2
 B. 3
 C. 9
 D. Unlimited

12. Which of the following statements regarding auditing and Active Directory is false?
 A. Auditing prevents users from attempting to guess passwords.
 B. Systems administrators should regularly review audit logs for suspicious activity.
 C. Auditing information can be generated when users view specific information within Active Directory.
 D. Auditing information can be generated when users modify specific information within Active Directory.
13. A systems administrator wants to allow a group of users to add Computer accounts to a specific organizational unit (OU). What is the easiest way to grant only the required permissions?
 A. Delegate control of a User account.
 B. Delegate control at the domain level.
 C. Delegate control of an OU.
 D. Delegate control of a Computer account.
 E. Create a Group Policy object (GPO) at the OU level.

14. A Group Policy object (GPO) at the domain level sets a certain option to Disabled, while a GPO at the OU level sets the same option to Enabled. All other settings are left at their default. Which setting will be effective for objects within the OU?
 A. Enabled
 B. Disabled
 C. No effect
 D. None of the above

15. The process by which a higher-level security authority assigns permissions to other administrators is known as which of the following?
 A. Inheritance
 B. Delegation
 C. Assignment
 D. Trust

16. What is the minimum amount of information you need to create a Shared Folder Active Directory object?
 A. The name of the share
 B. The name of the server
 C. The name of the server and the name of the share
 D. The name of the server, the server’s IP address, and the name of the share

17. Which of the following is a benefit of using Active Directory? (Choose all that apply.)
 A. Hierarchical object structure
 B. Fault-tolerant architecture
 C. Ability to configure centralized and distributed administration
 D. Flexible replication
18. Which of the following features of the Domain Name System (DNS) can be used to improve performance? (Choose all that apply.)
 A. Caching-only servers
 B. DNS forwarding
 C. Secondary servers
 D. Zone delegation

19. Which of the following tools can be used to create Group Policy object (GPO) links to Active Directory?
 A. Active Directory Users And Computers
 B. Active Directory Domains And Trusts
 C. Active Directory Sites And Services
 D. Group Policy Management Console

20. What is the name of the list that shows removed certificates from a certificate server?
 A. Certificate removed list
 B. Certificate revocation list
 C. Certificate revoke list
 D. Certificate released list

21. A systems administrator suspects that the amount of RAM in a domain controller is insufficient and that an upgrade is required. Which of the following Performance Monitor counters would provide the most useful information regarding the upgrade?
 A. Network Segment/% Utilization
 B. Memory/Page Faults/Sec
 C. Processor/% Utilization
 D. System/Processes

22. Which of the following are considered security principals?
 A. User accounts and groups
 B. Sites
 C. Trusts
 D. Group Policy objects (GPOs)

23. Which of the following single master roles do not apply to every domain within an Active Directory forest? (Choose all that apply.)
 A. PDC Emulator Master
 B. RID Master
 C. Infrastructure Master
 D. Schema Master
24. Which of the following types of server configurations cannot be used within a single DNS zone?
 A. A single primary server with no secondary servers
 B. Multiple primary servers
 C. A single primary server with a single secondary server
 D. A single primary server with multiple secondary servers
 E. A single primary server and multiple caching-only servers

25. A Group Policy object (GPO) at the domain level sets a certain option to Disabled, whereas a GPO at the OU level sets the same option to Enabled. No other GPOs have been created. Which option can a systems administrator use to ensure that the effective policy for objects within the OU is enabled?
 A. Block Policy Inheritance on the OU
 B. Block Policy Inheritance on the site
 C. Set No Override on the OU
 D. Set No Override on the site

26. Which of the following are not types of backup operation that are supported by the Windows Server 2008 Backup utility? (Choose all that apply.)
 A. Normal
 B. Incremental
 C. Weekly
 D. Differential

27. Which of the following are generally true regarding the domain controllers within a site? (Choose all that apply.)
 A. They are generally connected by a high-speed network.
 B. They may reside on different subnets.
 C. They are generally connected by reliable connections.
 D. They may be domain controllers for different domains.

28. Which of the following types of servers contains a copy of Active Directory?
 A. Member server
 B. Stand-alone server
 C. Domain controller
 D. Certificate server
29. You need to place a domain controller in a non-secure location. What type of domain controller would you use?
 A. Read-only domain controller
 B. Primary domain controller
 C. Backup domain controller
 D. No access domain controller

30. Which of the following protocols may be used for intrasite replication?
 A. RPC
 B. IP
 C. SMTP
 D. NNTP
Answers to Assessment Test

1. D. Applications cannot be published to computers, but they can be published to users and assigned to computers. See Chapter 8 for more information.

2. A, B. There can be only one Domain Naming Master and one Schema Master per Active Directory forest. The purpose of the Domain Naming Master is to keep track of all the domains within an Active Directory forest. The Schema Master defines the Active Directory schema, which must be consistent across all domains in the forest. The remaining roles apply at the domain level. See Chapter 4 for more information.

3. E. All of the choices are valid types of Active Directory objects, and all can be created and managed using the Active Directory Users And Computers tool. See Chapter 7 for more information.

4. A, B, C, D. Before beginning the installation of a domain controller, you should have all of the information listed. See Chapter 3 for more information.

5. C. Permissions and security settings cannot be made on Distribution groups. Distribution groups are used only for sending email. See Chapter 7 for more information.

6. D. Based on the business needs of an organization, a Windows 2008 Server computer can be configured in any of the above roles. See Chapter 1 for more information.

7. A, B, C, D. All of the trust configurations listed are possible. A one-way trust means that Domain A trusts Domain B, but not the reverse. A two-way trust means that both Domain A and Domain B trust each other automatically. Transitive trusts are implied, meaning that if Domain A trusts Domain B, and Domain B trusts Domain C, then Domain A trusts Domain C. See Chapter 4 for more information.

8. A. In general, you can accommodate your network infrastructure through the use of Active Directory sites. All of the other options should play a significant role when you design your OU structure. Permissions and Group Policy can both be applied at the domain or OU level. See Chapter 7 for more information.

9. A. .msi files are native Windows Installer files used with Windows Installer setup programs. The other file types do not apply to this situation. See Chapter 8 for more information.

10. B. Printer and Shared Folder objects within Active Directory can point to Windows NT 4 file and printer resources, as well as Windows 2000, 2003, and Server 2008 resources. See Chapter 7 for more information.

11. D. The number of sites in an Active Directory environment is independent of the domain organization. An environment that consists of three domains may have one or more sites, based on the physical network setup. See Chapter 5 for more information.

12. A. The purpose of auditing is to monitor and record actions taken by users. Auditing will not prevent users from attempting to guess passwords (although it might discourage them from trying, if they are aware it is enabled). See Chapter 9 for more information.
13. E. In order to allow this permission at the OU level, the systems administrator must create a GPO with the appropriate settings and link it to the OU. See Chapter 8 for more information.

14. A. Assuming that the default settings are left in place, the Group Policy setting at the OU level will take effect. See Chapter 8 for more information.

15. B. Delegation is the process by which administrators can assign permissions on the objects within an OU. This is useful when administrators want to give other users more control over administrative functions in Active Directory. See Chapter 7 for more information.

16. C. The name of the server and the name of the share make up the UNC (Universal Naming Convention) information required to create a Shared Folder object. See Chapter 7 for more information.

17. A, B, C, D. All of the options listed are benefits of using Active Directory. See Chapter 1 for more information.

18. A, B, C, D. One of the major design goals for DNS was support for scalability. All of the features listed can be used to increase the performance of DNS. See Chapter 2 for more information.

19. D. In Windows Server 2008 you can create GPOs only by using the Group Policy Management Console. See Chapter 8 for more information.

20. B. The certificate revocation list (CRL) is the list that shows all certificates that have been revoked. See Chapter 6 for more information.

21. B. A page fault occurs when the operating system must retrieve information from disk instead of from RAM. If the number of page faults per second is high, then it is likely that the server would benefit from a RAM upgrade. See Chapter 10 for more information.

22. A. User accounts and groups are used for setting security permissions, whereas OUs are used for creating the organizational structure within Active Directory. See Chapter 7 for more information.

23. A, B, C. Of the choices listed, only the Schema Master applies to every domain in the forest. All of the other roles listed are configured individually for each domain within the Active Directory forest. See Chapter 4 for more information.

24. B. DNS does not allow you to use more than one primary server per zone. See Chapter 2 for more information.

25. A. By blocking policy inheritance on the OU, you can be sure that other settings defined at higher levels do not change the settings at the OU level. However, this will only work if the No Override option is not set at the site level. See Chapter 8 for more information.

27. A, B, C, D. All of the descriptions listed are characteristics that are common to domain controllers within a single site. See Chapter 5 for more information.

29. A. Windows Server 2008 has a new domain controller type called a read-only domain controller (RODC) that is a good choice for non-secure locations. See Chapter 6 for more information.

30. A. Remote Procedure Calls (RPCs) are used for intrasite replication. See Chapter 5 for more information.
Chapter 1

Overview of Active Directory
Managing users, computers, applications, and network devices can seem like a never-ending process. As a result, you need to be organized, especially when it comes to some of the most fundamental yet tedious tasks you perform every day. That’s where the concept of directory services comes in.

Microsoft’s Active Directory is designed to store information about all of the objects within your network environment, including hardware, software, network devices, and users. Furthermore, it is designed to increase capabilities while it decreases administration through the use of a hierarchical structure that mirrors a business’s logical organization.

You’ve probably also heard that a great deal of planning and training is required to properly implement Active Directory’s many features. In order to reap the true benefits of this technology, you must be willing to invest the time and effort to get it right. From end users to executive management, the success of your directory services implementation will be based on input from the entire business. That’s where the content of this book—and the Microsoft exam for which it will prepare you—comes in.

It’s difficult to cover the various aspects of Windows Server 2008’s most important administrative feature—Active Directory—even in a whole book. Microsoft’s main goal in Exam 70-640: Microsoft Windows Server 2008 Active Directory is to test your understanding of the features of Active Directory. The problem is that it doesn’t make much sense to begin implementing Active Directory until you understand the terms, concepts, and goals behind it.

Once you have determined exactly what your Active Directory design should look like, it’s time to implement it. Throughout this book, you’ll learn about the various methods you can use to implement the tools and features of Windows Server 2008 based on your company’s business and technical requirements. Despite the underlying complexity of Active Directory and all of its features, Microsoft has gone to great lengths to ensure that implementation and management of Active Directory are intuitive and straightforward; after all, no technology is useful if no one can figure out how to use it.

In this chapter, you’ll look at some of the many benefits of using directory services and, specifically, Microsoft’s Active Directory. You’ll explore basic information regarding the various concepts related to Microsoft’s Active Directory. The emphasis will be on addressing the concepts of a directory service, why directory services are needed, the different Active Directory models, and how you can use one to improve operations in your environment. You’ll then look at the various logical objects created in Active Directory and the ways in which you can configure them to work with your network environment. We will look at some of the new Windows Server 2008 server roles and how they can be implemented in your company. Finally, you’ll learn the details related to how Identity and Access (IDA) in Windows Server 2008 can strengthen the security of your directory services.
The Industry before Active Directory

Many production networks today are still operating without a single unified directory service. A number of small businesses and large global enterprises still store information in various disconnected systems instead of a centralized, hierarchical system such as Active Directory. For example, a company might record data about its employees (such as home addresses, phone numbers, and locations within the corporate entity) in a human resources database while network accounts reside on a Windows NT 4 Primary Domain Controller (PDC).

Other information, such as security settings for applications, resides within various other systems. And there are always the classic paper-based forms.

The main reason for this disparity was that no single flexible data storage mechanism was available. Implementing and managing many separate systems is a huge challenge for most organizations. Before you look at some potential solutions, you should examine Windows NT 4 further.

The Windows NT 4 Domain Model

The Windows NT 4 platform met many of the challenges of the networked world. However, like any technical solution, it had its limitations. First and foremost, questions regarding the scalability of its rudimentary directory services prevented some potential inroads into corporate data centers.

Windows NT used the concept of a domain to organize users and secure resources. A Windows NT 4 domain is essentially a centralized database of security information that allows for the management of network resources. A Windows-based domain is a logical grouping of computers that shares common security and user account information for the purpose of centralized security and administration. A domain is a logical entity applied to help secure and administer resources on your network. A domain is stored on a Domain Controller (DC). On an NT 4 system, it is called either a PDC (Primary Domain Controller) or a BDC (Backup Domain Controller), even though they are no longer used except in NT 4–based configurations. With advancements in Windows 2000 and beyond, all servers that participate in sharing domain information are just called DCs.

A single domain constitutes a single administrative unit, and you can have multiple domains located within your organization (multiple domains mean a more complex administrative scenario).

The domain database in Windows 2000, Windows 2003, and Windows Server 2008 is now stored in Active Directory. The domain controllers are now peers in an Active Directory configuration. They all replicate to each other so as to build reliability and high availability into the design.

As just mentioned, domains are implemented through the use of Windows NT 4 Server computers that function as either PDCs or BDCs. Every domain has exactly one PDC and may have one or more BDCs depending on your needs. All network security accounts are stored within a central database on the PDC. To improve performance and reliability in distributed environments, this database is replicated to BDCs. Although BDCs can help distribute the load...
of network logon requests and updates, there can be only one master copy of the accounts database. This primary copy resides on the PDC, and all user and security account changes must be recorded by this machine and transmitted to all other domain controllers. Figure 1.1 provides an example of such a topology.

FIGURE 1.1 A Windows NT 4 domain topology using PDCs and BDCs

In order to meet some of these design issues, several different Windows NT domain models have been used. Figure 1.2 provides an example of a *multiple-master domain topology*. In this scenario, user accounts are stored on one or more master domains. The servers in these domains are responsible primarily for managing network accounts. BDCs for these user domains are stored in various locations throughout the organization. Network files, printers, databases, and other resources are placed in resource domains with their own PDC and BDCs. The organization itself can create and manage these domains as needed, and it often administers them separately. In order for resources to be made available to users, each of the resource domains must have a trust relationship with the master domain(s). The overall process places
all users from the master domains into global groups. These global groups are then granted access to network resources in the resource domains.

FIGURE 1.2 A multiple-master domain topology

The Windows NT domain model worked well for small to medium organizations and even some large-sized organizations. It was able to accommodate thousands of users fairly well, and a single domain could handle a reasonable number of resources. However, the network traffic created to keep domain controllers synchronized and the number of trust relationships to manage can present a challenge to network and systems administrators—especially on networks that are low on bandwidth. As the numbers of users grow, it can get much more difficult for the domains to accommodate numbers of changes and network logon requests.

The Limitations of Windows NT 4

The Windows NT 4 domain model has several limitations that hinder its scalability to larger and more complex environments. One was already alluded to—this domain model is not recommended when you need to accommodate the number of users supported by large organizations. When it comes to Windows NT 4, the larger the deployment, the more difficult and all-encompassing it is to design and implement it. With Active Directory, design and implementation of a large network is easier.

Although Windows NT 4 allows multiple domains to be set up to ease administration and network constraint issues, administering these domains can quickly become quite complicated and management intensive. For example, trust relationships between the domains can quickly grow out of control if they are not managed properly, and providing adequate bandwidth for keeping network accounts synchronized can be a costly burden on the network. When working with Windows NT 4, you must make sure that you have the appropriate bandwidth on your network to satisfy the needs of the BDCs to synchronize with and replicate to PDCs.
Excessive traffic on wide area network (WAN) links that are undersized can cause a bottleneck—an area within your network in which, because of poor design or excessive traffic, the transfer of data is dramatically slowed or, worse, stopped. When you have a bottleneck, there is slow traffic, and you may even see KCC (Knowledge Consistency Checker) errors in your Event Viewer logs showing you replication problems. Either way, you find errors.

Consider a plumbing job where water needs to flow through four pipes to get from point A to point B. Three of the four pipes have the same diameter, but the pipe by point B is much smaller than the others. When water is flowing from point A to point B, pressure builds because the water is being forced from a bigger pipe into a smaller one. Now, apply this to network communication media and the data that flows across it. What if you transferred a 200MB file across a 56K WAN link? You can start to see where any excessive traffic on undersized links can create problems.

It is very important to consider network bandwidth and the ability of your Windows servers to synchronize and replicate to each other to maintain convergence of the centralized database so that bottlenecks and associated errors never occur in the first place. Too many problems on your network with your PDC and BDCs trying to communicate—and not being able to—are surefire ways to trigger corruption in your directory and cause even more problems for your users. Consider a situation where the PDC and BDC can’t replicate and, as a result, account information becomes incorrect while you are trying to log in. Not only is this hard to pinpoint and diagnose, but it’s also frustrating if you can’t log in and do your work—or worse, if many users can’t log in and do their work.

Bottlenecks can appear almost anywhere in the network infrastructure for a variety of reasons. To avoid misdiagnosing performance issues, it is imperative that you determine where these bottlenecks are before you deploy a directory services infrastructure. A network topology map can help you to locate bottlenecks easily, especially if transmission media speeds are listed in the documentation. For instance, you see that your whole network runs on Fast Ethernet (at 100Mbps) and then you find out that all your server Network Interface Cards (NICs) operate at Ethernet speed (10Mbps). In this scenario, the servers’ NICs are the bottleneck because they force 100Mbps down to 10Mbps. By upgrading your NICs to 100Mbps, you relieve this particular type of bottleneck. This is only one example; a more common example would be when you have a WAN link that is saturated or has failed altogether and you have no backup link to the headquarters site.

It is common for bottlenecks to occur with WAN links. A slow or unreliable link can cause network traffic to bog down to a point where data is prevented from flowing from its source to its intended destination. Now, consider what happens if that same WAN link connects one of your branch offices to a main site (the company headquarters) where the BDC is located. This BDC is used to authenticate users in the branch office so that they can log in and access resources on the server. What if this link becomes saturated to the point where data can no longer travel across it? Nobody in that branch office is able to work with resources on the server in the headquarters location because there is no way to communicate with the BDC that would have allowed the access to the resources. Once you can identify (and correct) the bottleneck, you can continue with your normal operations, although you should continue to keep an eye on the Event Viewer for more errors, as well as possibly use network-monitoring gear to help find and locate other bottlenecks that you may already have or that may occur.
Another limitation of Windows NT, in addition to its being a bandwidth hog, is that the directory in use is completely flat and does not scale well in very large organizations. Because Windows NT domains are flat entities, they do not take into account the structure of businesses and cannot be organized in a hierarchical fashion (using subdomains for administrative purposes) the way Active Directory can. Therefore, systems administrators are forced to place users into groups that cannot be nested (that is, cannot have subgroups). In a large organization, it might be necessary to manage hundreds of groups within each domain. In this scenario, setting permissions on resources (such as file and print services) can become an extremely tedious and error-prone process.

As far as security is concerned, administration is often delegated to one or more users of the Information Technology (IT) department. These individuals have complete control over the domain controllers and resources within the domain itself. This poses potential security and technical problems. Because the distribution of administrator rights is extremely important, it is best to assign (or delegate) only essential permissions to each area of the business.

However, the delegation options available in the Windows NT 4 network operating system (NOS) are either difficult to implement or do not provide enough flexibility. All of this leads to a less-than-optimal configuration. For example, security policies are often set to allow users more permissions than they need to complete their jobs.

If you have ever worked with Windows NT 4 domains in a medium- to large-sized environment, you are probably familiar with many of the issues related to the domain model. Windows NT 4 provided an excellent solution for many businesses and offered security, flexibility, and network management features unmatched by many of its competitors at the time. As with almost any technical solution, however, there are areas in which improvements can be made. Now that you’ve gone over the basics of Windows NT 4 and its directory structure, you can move on and examine how Windows Server 2008’s Active Directory addresses some of these challenges.

The Benefits of Active Directory

Most businesses have created an organizational structure in an attempt to better manage their environments and activities. For example, companies often divide themselves into departments (such as Sales, Marketing, and Engineering), and individuals fill roles within these departments (such as managers and staff). The goal is to add constructs that help coordinate the various functions required for the success of the organization as a whole.

The IT department in these companies is responsible for maintaining the security of the company’s information. In modern businesses, this involves planning for, implementing, and managing various network resources. Servers, workstations, and routers are common tools of the infrastructure connecting users with the information they need to do their jobs. In all but the smallest environments, the effort required to manage these technological resources can be great.

That’s where Windows Server 2008 and Microsoft’s Active Directory come in. In its most basic definition, a directory is a repository that records and stores information and makes it
available to users. Active Directory allows you to create a single centralized (or decentralized with multiple domain controllers) repository of information with which you can securely manage a company’s resources. User account management, security, and application usages are just a few of the solutions Active Directory offers. Many features of this directory services technology allow it to meet the needs of organizations of any size. Specifically, Active Directory’s features include the following:

Hierarchical organization Active Directory is based on a hierarchical layout. Through the use of various organizational components (or objects), a company can create a network management infrastructure and directory structure that mirrors the business organization. For example, if a company called Stellacon.com had several departments (such as Sales and Human Resources), the directory services model can reflect this structure through the use of various objects within the directory (See Figure 1.3). Stellacon.com could then organize its users into the appropriate department containers.

The directory structure can efficiently accommodate the physical and logical aspects of information resources, such as access to other databases, user permissions, and computers. Active Directory also integrates with the network naming service, the Domain Name System (DNS). DNS provides for the hierarchical naming and location of resources throughout the company and on the public Internet.

Extensible schema One of the foremost concerns with any type of database is the difficulty you encounter when you try to accommodate all types of information in one storage repository. That’s why Active Directory has been designed with extensibility in mind. In this case, extensibility means the ability to expand (or extend) the directory schema. The schema is the actual structure of the database—what data types it contains and the location of their attributes. The schema is important because it allows applications to know where particular pieces of information reside. You cannot delete any portion of the schema, but you can change, modify, or alter it. The information stored within the structure of Active Directory can be expanded and customized through the use of various tools. One such tool is the Active Directory Service Interfaces (ADSI).

ADSI provides objects and interfaces that can be accessed from within common programming languages such as Visual Basic, Visual C#, and Active Server Pages (ASP). This feature allows Active Directory to adapt to special applications and to store additional information as needed. It also allows all of the various areas within an organization (or even among several organizations) to share data easily.

Centralized data storage All of the information within Active Directory resides within a single, distributed, data repository. Users and systems administrators must be able to easily access the information they need wherever they may be within the company. This is one of the most important design goals of the directory service—to provide a secure and centralized location for all of your data. The benefits of centralized data storage include reduced administrative requirements, less duplication, higher availability, and increased visibility and organization of data.
Replication If server performance and reliability were not concerns, it might make sense to store the entire Active Directory on a single server. In the real world, however, accessibility of remote sites and cost constraints may require that the database be replicated throughout the network. Active Directory provides for this functionality. Through the use of replication technology, Active Directory’s database can be distributed among many different servers in a network environment. The ability to define sites allows systems and network administrators to limit the amount of traffic to and from remote sites while still ensuring adequate performance and usability. Reliable data synchronization allows for multimaster replication—that is, all domain controllers can update information stored within Active Directory and can ensure its consistency at the same time.

Ease of administration In order to accommodate various business models, Active Directory can be configured for centralized or decentralized administration. This gives network and
systems administrators the ability to delegate authority and responsibilities throughout the organization while still maintaining security. Furthermore, the tools and utilities used to add, remove, and modify Active Directory objects are available with all Windows Server 2008 domain controllers (except read-only domain controllers).

Network security Through the use of a single logon and various authentication and encryption mechanisms, Active Directory can facilitate security throughout an entire enterprise. Through the process of delegation, higher-level security authorities can grant permissions to other administrators. For ease of administration, objects in the Active Directory tree inherit permissions from their parent objects. Application developers can take advantage of many of these features to ensure that users are identified uniquely and securely. Network administrators can create and update permissions as needed from within a single repository, thereby reducing chances of inaccurate or outdated configuration.

Client configuration management One of the biggest struggles for systems administrators comes with maintaining a network of heterogeneous systems and applications. A fairly simple failure—such as a hard disk crash—can cause hours of work in reconfiguring and restoring a workstation, especially an enterprise-class server. Hours of work can also be generated when users are forced to move between computers and they need to have all of their applications reinstalled and the necessary system settings updated. Many IT organizations have found that these types of operations can consume a great deal of IT staffers’ time and resources. New technologies integrated with Active Directory allow for greatly enhanced control and administration of these types of network issues. The overall benefit is decreased downtime, a better end-user experience, and reduced administration.

Scalability Large organizations often have many users and large quantities of information to manage. Active Directory was designed with scalability in mind. Not only does it allow for storing millions of objects within a single domain, it also provides methods for distributing the necessary information between servers and locations. These features relieve much of the burden of designing a directory services infrastructure based on technical instead of business factors.

Search functionality One of the most important benefits of having all your network resources stored in a single repository is that it gives you the ability to perform accurate searches. Users often see NOSs as extremely complicated because of the naming and location of resources, but they shouldn’t be that complicated. For example, if we need to find a printer, we should not need to know the name of the domain or print server for that object. Using Active Directory, users can quickly find information about other users or resources, such as printers and servers, through an intuitive querying interface.

The technical chapters of this book cover the technical aspects of how Windows Server 2008 delivers all of these features. For now, keep in mind the various challenges that Active Directory was designed to address. This chapter introduces the technical concepts on which Active Directory is based. In order to better understand this topic, you’ll now see the various areas that make up the logical and physical structure of Active Directory.
Understanding Active Directory’s Logical Structure

Database professionals often use the term *schema* to describe the structure of data. A schema usually defines the types of information that can be stored within a certain repository and special rules on how the information is to be organized. A schema can be manipulated with the right tools, such as ADSI, mentioned earlier in the chapter. Within a relational database or Microsoft Excel spreadsheet, for example, we might define tables with columns and rows. Similarly, the Active Directory schema specifies the types of information that are stored within a directory.

The schema itself also describes the structure of the information stored within the Active Directory data store. The Active Directory data store, in turn, resides on one or more domain controllers that are deployed throughout the enterprise. In this section, you’ll see the various concepts used to specify how Active Directory is logically organized.

Components and Mechanisms of Active Directory

In order to maintain the types of information required to support an entire organization, Active Directory must provide for many different types of functionality. Active Directory is made up of various components. Each of these components must work with the others to ensure that Active Directory remains accessible to all of the users that require it and to maintain the accuracy and consistency of its information.

In the following sections, you’ll see each of the components that make up Active Directory.

Data Store

When you envision Active Directory from a physical point of view, you probably imagine a set of files stored on the hard disk that contain all of the objects within it. The term *data store* is used to refer to the actual structure that contains the information stored within Active Directory. The data store is implemented as a set of files that resides within the file system of a domain controller. This is the fundamental structure of Active Directory.

The data store itself has a structure that describes the types of information it can contain. Within the data store, data about objects is recorded and made available to users. For example, configuration information about the domain topology, including trust relationships, are contained within Active Directory. Similarly, information about users, groups, and computers that are part of the domain are also recorded.

The Active Directory data store is also commonly referred to as the Active Directory database.
Schema

The Active Directory schema consists of rules on the types of information that can be stored within the directory. The schema is made up of two types of objects: attributes and classes.

- An attribute is a single granular piece of information stored within Active Directory. First Name and Last Name, for example, are considered attributes, which may contain the values of Bob and Smith respectively.
- A class is an object defined as a collection of attributes. For example, a class called Employee could include the First Name and Last Name attributes.

It is important to understand that classes and attributes are defined independently and that any number of classes can use the same attributes. For example, if we create an attribute called Nickname, this value could conceivably be used both as part of a User class and as part of a Computer class.

By default, Microsoft has included several schema objects. In order to support custom data, applications developers can extend the schema by creating their own classes and attributes. The entire schema is replicated to all of the domain controllers within the environment to ensure data consistency among them.

The overall result of the schema is a centralized data store that can contain information about many different types of objects—including users, groups, computers, network devices, applications, and more.

Global Catalog

The Global Catalog is a database that contains all of the information pertaining to objects within all domains in the Active Directory environment.

One of the potential problems with working in an environment that contains multiple domains is that users in one domain may want to find objects stored in another domain, but they may not have any additional information about those objects.

The purpose of the Global Catalog is to index information stored in Active Directory so that it can be more quickly and easily searched. The Global Catalog can be distributed to servers within the network environment. That is, network and systems administrators specify which servers within the Active Directory environment will contain copies of the Global Catalog. This decision is usually made based on technical considerations (such as network links) and organizational considerations (such as the number of users at each remote site).

You can think of the Global Catalog as something like a universal phone book. Much like the local phone book you may keep in your house, the Global Catalog is quite large and bulky, but just like the phone book, it is also very useful in helping you locate information. Your goal (as a system administrator) would be to find a balance where you are maintaining enough copies in enough locations so that users can quickly and easily access it, without it taking up too much space.

This distribution of Global Catalog information allows for increased performance of company-wide resource searches and can prevent excessive traffic across network links. Because the Global Catalog includes information about objects stored in all domains within the Active
Directory environment, its management and location should be an important concern for network and systems administrators.

Searching Mechanisms

The best-designed data repository in the world is useless if users can’t access the information stored within it. Active Directory includes a search engine that users can query to find information about objects stored within it. For example, if a member of the Human Resources (HR) department is looking for a color printer, they can easily query Active Directory to find the one located closest. Best of all, the query tools are already built into Windows Server 2008 operating systems and are only a few mouse clicks away.

Replication

Although it is theoretically possible to create a directory service that involves only one central computer, there are several problems with this configuration. First, all of the data is stored on one machine. This server would be responsible for processing all of the logon requests and search queries associated with the objects that it contained. Although this scenario might work well for a small network, it would create a tremendous load on a single server in a very large environment. Second, clients that are located on remote networks would experience slower response times due to the pace of network traffic. If this server became unavailable (due to a failed power supply, for example), network authentication and other vital processes could not be carried out.

To prevent these problems, Active Directory has been designed with a replication engine. The purpose of replication is to distribute the data stored within the directory throughout the organization for increased availability, performance, and data protection. Systems administrators can tune replication based on their physical network infrastructure and other constraints.

An Overview of Active Directory Domains

As mentioned earlier, in a Windows Server 2008 Active Directory deployment, a domain is considered a logical security boundary that allows for the creation, administration, and management of related resources.

You can think of a domain as a logical division, such as a neighborhood within a city. Although each neighborhood is part of a larger group of neighborhoods (the city), it may carry on many of its functions independently of the others. For example, resources such as tennis courts and swimming pools may be made available only to members of the neighborhood, whereas resources such as electricity and water supplies would probably be shared between neighborhoods. So, think of a domain as a grouping of objects that utilizes resources exclusive to its domain, but keep in mind that those resources can also be shared between domains.

Although the names and fundamental features are the same, Active Directory domains are quite different from those in Windows NT. As we mentioned earlier, an Active Directory domain can store many more objects than a Windows NT domain. Furthermore, Active Directory domains can be combined together into trees and forests to form more complex hierarchical structures.
Before going into the details, let’s discuss the concept of domains. If you think of a domain as a neighborhood, you can think of a group of similar domains (a tree) as a suburb and a group of disparate domains that trust each other (a forest) as a city. This is in contrast to Windows NT domains, which treat all domains as peers of each other (that is, they are all on the same level and cannot be organized into trees and forests).

Within most business organizations, network and systems administration duties are delegated to certain individuals and departments. For example, a company might have a centralized IT department that is responsible for all implementation, support, and maintenance of network resources throughout the organization. In another example, network support may be largely decentralized—that is, each department, business unit, or office may have its own IT support staff. Both of these models may work well for a company, but implementing such a structure through directory services requires the use of logical objects.

A domain is a collection of computers and resources that share a common security database. An Active Directory domain contains a logical partition of users, groups, and other objects within the environment. Objects within a domain share several characteristics, including the following:

Group Policy and security permissions Security for all of the objects within a domain can be administered based on policies. Thus, a domain administrator can make changes to any of the settings within the domain. These policies can apply to all of the users, computers, and objects within the domain. For more granular security settings, however, permissions can be granted on specific objects, thereby distributing administration responsibilities and increasing security.

Hierarchical object naming All of the objects within an Active Directory container share a common namespace. When domains are combined together, however, the namespace is hierarchical. For example, a user in one department might have the object name `willp@engineering.stellacon.com`, while a user in another department might have the name `wpanek@sales.stellacon.com`. The first part of the name (in these examples, the usernames `willp` and `wpanek`) is the name of the object within the domain. The suffix (in this case `engineering.stellacon.com` and `sales.stellacon.com`) is determined by the organization of the domains. The hierarchical naming system allows each object within Active Directory to have a unique name.

Hierarchical inheritance Containers called organizational units (OUs) can be created within a domain. These units are used for creating a logical grouping of objects within Active Directory. The specific settings and permissions assigned to an OU can be inherited by lower-level objects.

For example, if we have an OU for the North America division within our company, we can set user permissions on this object. All of the objects within the North America object (such as the Sales, Marketing, and Engineering departments) automatically inherit these settings. The proper use of hierarchical properties allows systems administrators to avoid inconsistent security policies and makes administration easier, but it’s important to remember how inheritance works when implementing and administering security, because it results in the implicit assignment of permissions.
Trust relationships In order to facilitate the sharing of information between domains, trust relationships are automatically created between them. The administrator can break and establish trust relationships based on business requirements. A trust relationship allows two domains to share security information and objects, but it does not automatically assign permissions to these objects. Trusts allow users who are contained within one domain to be granted access to resources in other domains. To make administrating trust relationships easier, Microsoft has made transitive two-way trusts the default relationship between domains. As shown in Figure 1.4, if Domain A trusts Domain B and Domain B trusts Domain C, Domain A implicitly trusts Domain C.

Figure 1.4 Transitive two-way trust relationships

An implicit trust exists between Domain A and Domain C.

Generally, triangles are used in network diagrams to represent Active Directory domains (thereby indicating their hierarchical structure), and circles are used to represent flat domains (such as those in Windows NT).

Overall, the purpose of domains is to ease administration while providing for a common security and resource database.

Overview of an Active Directory Forest

Although the flexibility and power afforded by the use of an Active Directory domain will meet the needs of many organizations, there are reasons for which companies might want to implement more than one domain. It is important to know that domains can be combined together into domain trees. Domain trees are hierarchical collections of one or more domains that are designed to meet the organizational needs of a business (see Figure 1.5).
Trees are defined by the use of a contiguous namespace. For example, the following domains are all considered part of the same tree:

- stellacon.com
- sales.stellacon.com
- research.stellacon.com
- us.sales.stellacon.com

The first domain that gets installed in your Active Directory forest is the most important domain. The first domain is called the root domain. Notice that all of these domains are part of the stellacon.com domain, which is the root domain for this tree. Domains within the same tree still maintain separate security and resource databases, but they can be administered together through the use of trust relationships. By default, trust relationships are automatically established between parent and child domains within a tree.

Although single companies will often want to configure domains to fit within a single namespace, noncontiguous namespaces may be used for several reasons. Domain trees can be combined together into noncontiguous groupings. Such a grouping is known as a forest (see Figure 1.6). A forest can consist of a single domain, but a forest often contains multiple non-contiguous namespaces—domains that are kept separate for technical or political reasons.
Trust relationships (which facilitate shared resources) can be created among the following entities:
- Among domains within a tree
- Among trees within a forest
- Among forests (Windows Server 2008 only)

Understanding Active Directory Objects

The Active Directory database is made up of units called *objects*. Each object represents a single unique database entry.

Names and Identifiers of Objects

Objects are uniquely identified within your database in the following ways:
- Each object has a globally unique identifier (GUID) or security identifier (SID).
- Each object has a distinguished name (DN).
GUIDs and SIDs

Globally unique identifiers are security identification numbers placed on applications by Active Directory. These numbers are not guaranteed to be unique, but the number generated is very large, so the odds are very low that two applications will end up with the same GUID.

Security identifiers are security identification numbers placed on objects (for example, users, groups, and printers) by Active Directory. All rights and permissions are placed on the SID and not the account name. For example, let’s say we have an IT manager named Maria who is going on maternity leave. John is temporarily replacing Maria. By renaming Maria’s account and having John change the password, we give John all the rights and permissions that Maria had; this is because the SID on the account did not change, even though the name did.

Microsoft likes to ask questions on the exam about switching rights and permissions from one user to another. Understanding how the rights and permissions are associated with the SID will help you answer these questions correctly.

Distinguished Names

A fundamental feature of Active Directory is that each object within the directory has its own unique name, as well as a unique SID. For example, your organization may have two different users named John Smith (who may or may not be in different departments or locations within the company). There should be some way for us to distinguish between these users (and their corresponding user objects).

Within Active Directory, each object can be uniquely identified using a long name that specifies the full path to the object. Generally, this long name for an object is called the distinguished name (DN). Following is an example of a DN:

/O=Internet/DC=Com/DC=Stellacon/DC=Sales/CN=Managers/CN=John Smith

In this name, we have specified several different types of objects:

- **Organization** (O) is the company or root-level domain. In this case, the root level is the Internet.
- **Domain component** (DC) is a portion of the hierarchical path. Domain components are used for organizing objects within the directory service. The three domain components in the example DN specify that the user object is located within the sales.stellacon.com domain.
- **Common name** (CN) specifies the names of objects in the directory. In this example, the user John Smith is contained within the Managers container.

Together, the components of the DN uniquely identify where the user object is stored. Instead of specifying the full DN, you might also choose to use a relative distinguished name (RDN). This name specifies only part of the object’s path relative to another object. For example, if your current context is already the Managers group within the sales.stellacon.com domain, you could simply specify the user as CN=John Smith.
Functions of the SID and the DN
The difference between the DN and the SID is this: If you change the structure of the domain—for example, by renaming one of the containers or moving the user object—the DN of this object also changes, but its SID does not. This type of naming system allows for flexibility and the ability to easily identify the potentially millions of objects that might exist in Active Directory.

Using Organizational Units (OUs) in Active Directory
As we mentioned earlier, one of the fundamental limitations of the Windows NT 4 domain organization is that it has a flat structure—all users and groups are stored as part of a single namespace. Real-world organizations, however, often require further organization within domains. For example, we may have 3,000 users in one domain. Some of these should be grouped together in an Engineering group. Within the Engineering group, we might also want to further subdivide users into groups (for example, Development and Testing). Active Directory supports this kind of hierarchy. Figure 1.7 depicts the differences between the structure of a Windows NT 4 domain and that of an Active Directory domain.

FIGURE 1.7 Flat Windows NT 4 domain vs. hierarchical Active Directory domains
Chapter 1 • Overview of Active Directory

The fundamental unit of organization within an Active Directory domain is the OU. OUs are container objects that can be hierarchically arranged within a domain. Figure 1.8 provides examples of two typical OU setups. OUs can contain other objects such as users, groups, computers, and even other OUs.

FIGURE 1.8 Two different OU hierarchy models

OUs are the objects to which security permissions and group policies are generally assigned. This means that proper planning of OU structure is important. A well-designed OU structure can allow for efficient administration of Active Directory objects.

OUs can be organized based on various criteria. For example, we might choose to implement an OU organization based on the geographic distribution of our company’s business units or based on functional business units (see Figure 1.8).
Security Features of User, Computer, and Group Objects

The real objects that you will want to control and manage with Active Directory are the users, computers, and groups within your network environment. These are the types of objects that allow for the most granular level of control over permissions and allow you to configure your network to meet business needs.

- **User accounts** enforce security within the network environment. These accounts define the login information and passwords that individuals using your network need to enter to receive permissions to use network objects.

- **Computer objects** allow systems administrators to configure the functions that can be performed on client machines throughout the environment.

Both user account objects and computer objects enable security to be maintained at a granular level.

Although security can be enforced by placing permissions directly on user and computer objects, it is much more convenient to combine users into groups for the purpose of assigning permissions.

For example, if three users will require similar permissions within the Accounting department, you can place all of them in one group and assign permissions to the group. If users are removed or added to the department, you can easily make changes to the group without having to make any further changes to security permissions. Figure 1.9 shows how groups can be used to easily administer permissions.

FIGURE 1.9 Using groups to administer security

There are two main types of groups within Active Directory:

- **Security groups** are used to administer permissions. All members of a security group receive the same security settings and are able to send email and other messages to several different users at once.

- **Distribution groups** are used only to send email and other messages to several different users at once. You don’t have to maintain security permissions when using distribution groups, but they can help you handle multiple users.
Overall, using groups properly really helps you implement and manage security and permissions within Active Directory.

Delegation of Administrative Control

An OU is the smallest component within a domain to which administrative permissions and group policies can be assigned. (Administrative permissions and group policies are covered in Chapter 5, “Configuring Server Roles,” and Chapter 6, “Administering Active Directory.”) Now, we take a look at specifically how to set administrative control on OUs.

Delegation occurs when a higher security authority assigns permissions to a lower security authority.

As a real-world example, assume that you are the director of IT for a large organization. Instead of doing all of the work yourself, you would probably assign roles and responsibilities to other individuals.

For example, if you worked within a multidomain environment, you might make one systems administrator responsible for all operations within the Sales domain and another responsible for the Engineering domain. Similarly, you could assign the permissions for managing all printers and print queues within your organization to one individual user while allowing another individual user to manage all security permissions for users and groups.

In this way, you can distribute the various roles and responsibilities of the IT staff throughout the organization. Businesses generally have a division of labor that handles all of the tasks involved in keeping the company’s networks humming. Network operating systems, however, often make it difficult to assign just the right permissions, or in other words, they have very granular permissions. Sometimes, this complexity is necessary to ensure that only the right permissions are assigned.

A good general rule of thumb is that you should provide users and administrators the minimum permissions they require to do their jobs. This way you can reduce the risk that accidental, malicious, and otherwise unwanted changes will occur.

You can also use auditing to log events to the Security Log in the Event Viewer. Doing so ensures that if accidental, malicious, and otherwise unwanted changes do occur, they are logged and traceable.

In the world of Active Directory, you use the process of delegation to define permissions for OU administrators. As a system administrator you will occasionally need to delegate responsibility to others—you can’t do it all (although sometimes some administrators believe that they can!). If you do need to delegate, remember that Windows Server 2008 was designed to offer you the ability to do so.

Simply, delegation allows a higher administrative authority to grant an individual or a group specific administrative rights for containers and subtrees. This feature eliminates the need to assign any one individual administrator sweeping authority over large segments of the user population. You can break up this control over branches within your tree, within each OU you create.
To understand delegation and rights, you should first understand the concept of access control entries (ACEs). ACEs grant specific administrative rights on objects in a container to a user or group. The container’s access control list (ACL) is used to store ACEs.

When you are considering implementing delegation, there are two main concerns to keep in mind:

Parent-child relationships The OU hierarchy you create will be very important when you consider the maintainability of security permissions. OUs can exist in a parent-child relationship, which means that permissions and group policies set on OUs higher up in the hierarchy (parents) can interact with objects in OUs lower on the hierarchy (children). When it comes to delegating permissions, this is extremely important. You can allow child containers to automatically inherit the permissions set on parent containers. For example, if the North America division of your organization contains 12 other OUs, you could delegate the same set of permissions to all of them by placing security permissions on the North America division. By doing the task only once, you save time and reduce the likelihood of human error. This feature can greatly ease administration, especially in larger organizations, but it is also a reminder of the importance of properly planning the OU structure within a domain.

You can delegate control only at the OU level and not at the object level within the OU.

Inheritance settings Now that you’ve seen how you can use parent-child relationships for administration, you should consider inheritance, the actual process of inheriting permissions. When you set permissions on a parent container, all of the child objects are configured to inherit the same permissions. You can override this behavior, however, if business rules do not lend themselves well to inheritance.

Introducing Windows Server 2008 Server Roles

Windows Server 2003 had many tools an administrator could use to configure the services they needed to make a network run efficiently. Some of these tools included the Manage Your Server, Configure Your Server, and the Add/Remove Windows components.

Windows Server 2008 includes a new feature called Server Manager. Server Manager is a Microsoft Management Console (MMC) snap-in that allows an administrator to view information about server configuration, the status of roles that are installed, and links for adding and removing features and roles (see Figure 1.10).
The following are some of the roles that you can install and manage using Server Manager.

- Active Directory Certificate Services
- Active Directory Domain Services
- Active Directory Federation Services
- Active Directory Lightweight Directory Services
- Active Directory Rights Management Services

This is not the complete list of roles. These are some of the roles that directly affect Active Directory. All Active Directory server-based roles are discussed in detail in Chapter 5.

Active Directory Certificate Services

Active Directory Certificate Services (AD CS) allows administrators to configure services for issuing and managing public key certificates. Companies can benefit from AD CS security by...
combining a private key with an object (such as users and computers), devices (such as routers), or services. When using Server Manager, you can configure the following components of AD CS:

Web enrollment This feature allows users to request certificates and retrieve certificate revocation lists (CRLs) through the use of a web browser.

Certification authorities (CAs) Enterprise Root CAs and Stand Alone Root CAs are the two types of CAs. Enterprise Root CAs (automatically integrated with Active Directory) are the topmost trusted CAs of the hierarchy. They hold the certificates that you issue to the users within your organization. The Stand Alone Root CAs hold the CAs that you issue to Internet users.

CAs below the Enterprise and Stand Alone Root CAs in the hierarchy are referred to as Subordinate CAs. The Enterprise or Stand Alone Root CAs give certificates to the Subordinate CAs, which in turn issue certificates to objects and services.

Network Device Enrollment Service The Network Device Enrollment Service allows network devices (such as routers) to obtain a certificate even though they do not have an account in the Active Directory domain.

Online Responder Service Some applications such as Secure/Multipurpose Internet Mail Extensions (S/MIME), Secure Sockets Layer (SSL), Encrypting File System (EFS), and smart cards may need to validate the status of a certificate. The Online Responder service responds to certificate status requests, evaluates the status of the certificate that was requested, and answers the request with a signed response containing the certificate’s status information.

Active Directory Domain Services

In Windows Server 2008, you can use Active Directory Domain Services (AD DS) to manage objects (users, computers, printers, etc.) on a network. Many new features have been added to AD DS that were not available in previous versions of Windows Server Active Directory. Thanks to these new features, now organizations can securely deploy and administer AD DS more efficiently.

User interface improvements The updated Installation Wizard for AD DS allows it to be installed more easily. Administrators are able to locate domain controllers anywhere throughout the enterprise, and due to the improved AD DS user interface (UI), domain controllers have new options during the installation process. One of these is the ability to set up read-only domain controllers (RODCs).

Read-Only Domain Controllers Windows Server 2008 has a new type of domain controller called a read-only domain controller (RODC). This gives an organization the ability to install a domain controller in an area or location (on or offsite) that has limited security.

Let’s imagine a hospital running Microsoft Windows Server 2003. This hospital has many affiliated physicians’ offices located near it. Most likely these remote locations would not have domain controllers at their offices because administrators usually do not like to put a writable domain controller in an unsecured location. If the staff at these offices wanted to log into the hospital system, they would have to go across the WAN to be authenticated.
Now let’s imagine the same hospital running Microsoft Windows Server 2008. The hospital can now place RODCs at these remote physicians’ offices, which greatly improves performance for these sites.

Auditing In previous versions of Microsoft Windows Server, you had the ability to audit Active Directory by watching for successes or failures. If an individual made a successful or unsuccessful change to an Active Directory object, the attempt was logged in the Security Log. The problem with this was that, although you could view the Security Log and notice that someone accessed an object, you could not view what they might have changed in that object’s attributes.

In Microsoft Windows Server 2008, you can view the new and old values of the object and its attributes.

Fine-Grained Password Policies In Microsoft Windows Server 2000 and 2003, when an organization implemented a domain-based password policy, it applied to all users in that domain. There was no inexpensive way to have individuals or groups use a different password policy. The same limitation applied to the account lockout policy. Fine-grained password policies allow an organization to have different password and account lockout policies for different sets of users in the same domain.

Restartable Active Directory Domain Services Microsoft Windows Server 2008 gives an administrator the ability to stop or restart Active Directory Domain Services. For example, administrators can do an offline defragmentation of the Active Directory database or apply security updates without needing to restart the machine. This allows other services not dependent on Active Directory (DNS, DHCP, etc.) to continue to operate while Active Directory is offline.

Database Mounting Tool In previous versions of Active Directory, if an object got deleted, an administrator had to load multiple online backups until they found the object to restore. The Windows Server 2008 Active Directory database mounting tool (Dsamain.exe) allows an administrator to view Active Directory data that was backed up online or through the Volume Shadow Copy Service (snapshot) at different times and then decide which online backup or snapshot to restore. This allows an administrator to quickly find and restore the data that they need.

Active Directory Federation Services

Active Directory Federation Services (AD FS) provides Internet-based clients a secure identity access solution that works on both Windows and non-Windows operating systems.

Let’s imagine a user who logs into their domain when arriving at work in the morning. An authentication box asks the user for their credentials (username and password). The same user then tries to access an Internet application that operates on another network. Normally when a user from one network tries to access an application in another network, they must have a secondary username and password.
AD FS gives users the ability to do a *single sign-on (SSO)* and access applications on other networks without needing a secondary password. Organizations can set up trust relationships with other trusted organizations so a user’s digital identity and access rights can be accepted without a secondary password.

Real World Scenario

AD FS in Use

Two companies have decided to work together. CompanyA is a retail shop that gets all of its supplies from CompanyB. Once these two companies decided to become partners, if they use AD FS, they can work together as if they were one company.

The companies might set up their operations so that a manager from CompanyA can log into an inventory database in CompanyB’s network and order as many products as they need without approval. A lower-level employee in CompanyA can also log into the inventory database and place an order, but the order first has to be approved (since this level of employee does not have the rights to automatically order) by someone with the appropriate rights.

If these companies decided to use AD FS, they can now share resources easily.

Active Directory Lightweight Directory Services

Active Directory Lightweight Directory Services (AD LDS) is a *Lightweight Directory Access Protocol (LDAP)* directory service. This type of service allows directory-enabled applications to store and retrieve data without needing the dependencies AD DS requires.

To fully understand AD LDS, you must first understand the LDAP. LDAP is an application protocol used for querying and modifying directory services.

Think of directory services as an address book. An address book is a set of names (your objects) that you organize in a logical and hierarchical manner (names organized alphabetically). Each name in the address book has an address and phone number (the attributes of your objects) associated with it. LDAP allows you to query or modify this address book.

Active Directory Rights Management Services

Active Directory Rights Management Services (AD RMS), included with Microsoft Windows Server 2008, allows administrators or users to determine what access (open, read, modify, etc.) they give to other users in an organization. This access can be used to secure email messages, internal websites, and documents.
To secure documents, Microsoft Office 2003 Professional (Word, Excel, PowerPoint, and Outlook) or Microsoft Office 2007 Enterprise, Professional Plus, or Ultimate is required.

Organizations can use AD RMS for confidential or critical information. They can design usage policy templates that can be applied directly to the confidential information. AD RMS requires an AD RMS–enabled client. Windows Vista includes the AD RMS client by default. If you are not using Windows Vista or Windows Server 2008, you can download the AD RMS client for previous versions of Windows from Microsoft’s Download Center.

An advantage of AD RMS is its easy installation and administration. You can install AD RMS easily through Server Manager and administer it through the MMC snap-in. AD RMS has created three new administrative roles to allow for its easy delegation throughout an organization:

- AD RMS Enterprise Administrators
- AD RMS Template Administrators
- AD RMS Auditors

Another advantage of AD RMS is its integration with AD FS, which allows two organizations to share information without needing to install AD RMS in both organizations.

We will discuss the advantages of AD RMS in Chapter 5. Chapter 5 also shows the step-by-step installation of all the server roles we have discussed in this section.

Introducing Identity and Access (IDA) in Windows Server 2008

In today’s complex business world, users may have to access resources on different types of hardware, software, and devices. Because many of these systems and devices do not always communicate with each other, it is not unusual for users to have multiple identities on multiple systems.

If you have worked in the computer industry for even a short period of time, you understand that users having multiple identities and passwords for multiple systems can cause many problems. This practice can actually increase security risks due to the errors that end users can encounter by having multiple accounts.
Users’ identities are an ongoing concern for most companies. This is where Identity and Access (IDA) solutions can help an organization. Through technologies and products specifically designed for IDA, organizations can manage user identities and associated access privileges. IDA solutions can be categorized into five distinct areas:

- Directory services
- Strong authentication
- Federated Identities
- Information protection
- Identity Lifecycle Management
In the following sections, we will explain these five distinct areas in more detail. Because IDA is so tightly integrated with Windows Server 2008, some of these categories were covered in the previous section, “Introducing Windows Server 2008 Server Roles.” Here we will explain how these previously discussed concepts interact with IDA.

Using Directory Services

As discussed earlier in this chapter, in Windows Server 2008, AD DS can be used by organizations to manage objects (users, computers, printers, etc.) on a network.

One of the advantages of using AD DS with IDA solutions is that directory services is deployed in many organizations worldwide. The chances are very good that when you work with other companies, they will also be using Microsoft directory services.

Also, by default, directory services is integrated with certificates, rights management, and Federation Services. As discussed earlier in this chapter, directory services gives you the following benefits:

- Read-Only Domain Controllers
- Auditing
- Fine-Grained Password Policies
- Restartable Active Directory Domain Services
- Database Mounting Tool

Strong Authentication

You can strengthen your network in many ways. One of the major ways to use strong authentication is with two-factor authentication. The most common two-factor authentication method uses the smart card. Windows XP has built in smart-card support, but Windows Vista has taken this to a higher level. Smart cards look like bank ATM cards or hotel room key cards. To use a smart card, you place it into a smart card reader and put in a personal identification number (PIN).

Another form of strong authentication uses the certificate. Certificate authority is fully integrated with Active Directory. Active Directory Certificate Services (AD CS) allows administrators to configure services for issuing and managing public key certificates. Companies can benefit from AD CS security by combining a private key with an object (such as users and computers), devices (such as routers), or services. With AD CS you get the following benefits:

- Web enrollment
- Certificate authorities (CAs)
- Network Device Enrollment Service
- Online responder
Introducing Identity and Access (IDA) in Windows Server 2008

Strong authentication helps strengthen your IDA. Remember that IDA tries to minimize the number of usernames and passwords that users have to remember. When using a form of strong authentication, users keep track of fewer credentials (usernames and passwords) while still keeping security a top priority.

Another easy way to help with strong authentication is to enforce a strong password policy (minimum password lengths, unique characters, a combination of numbers and letters, and mixed capitalization).

Federated Identities

As we discussed earlier, AD FS gives users the ability to do a single sign-on (SSO) and access applications on other networks without a secondary password. Organizations can set up trust relationships with other trusted organizations so users’ digital identity and access rights can be accepted without a secondary password.

Federated Identities enables new models for cross-over SSO systems between organizations. SSO can be used for Windows and non-Windows environments.

The full implementation of Federation Identities Claims–based architecture is based on the Web Services Federation (WS-Federation). The Federation Identities models support groups, roles, and rules-based models.

This works well as part of the IDA architecture because users who can use SSO authentication require fewer password resets and make fewer errors while entering credentials.

Information Protection

Active Directory Rights Management Service (AD RMS) is what information protection is all about. Information protection is included with Microsoft Windows Server 2008 automatically once the AD RMS service is installed. This service allows administrators or users to determine what access (open, read, modify, etc.) they give to other users in an organization. This access can be used to secure email messages, internal websites, and documents.

Information protection supports Microsoft Office 2003 (Word, Excel, PowerPoint, and Outlook) and Microsoft Office 2007.

If you are not using Microsoft Office 2003 (Word, Excel, PowerPoint, and Outlook) or Microsoft Office 2007, users can always use basic information protection in the form of encryption. (Encryption is only available if the file structure is NTFS).

Information protection prevents unauthorized users from opening files, email messages, and internal websites if they do not have appropriate access. It also allows email to be tracked.
This information protection and tracking will help organizations stay compliant with local, state, or federal regulations for data privacy requirements.

Real World Scenario

Unauthorized Opening and Tracking of Emails

WXY Corporation is an organization that deals with many classified pieces of data and information. A manager in WXY Corporation sends out a classified email, but accidentally sends it to the wrong address. An individual at Company 123 gets the classified email. They open it, read the data, and see the text at the bottom of the email; it states, “This is classified email. If you received this email by error, please delete immediately.” The problem is that the individual at Company 123 has already read the email.

Now if WXY Corporation was using information protection along with Outlook, the unauthorized individual would not have had the rights to even open the email. Second, the sender would have had the ability to see where the email was sent, who opened it, and to where it was forwarded.

Some companies have designed information protection solutions to support PDF, Blackberry, and CAD formats.

Identity Lifecycle Management

The goal of Identity Lifecycle Management (ILM) version 2 (ILM 2007 is the previous version) is to take some of the basic administration work (resetting passwords, managing groups and distribution lists, managing resource access, and policy creation) out of the hands of administrators and put it into the hands of users.

NOTE

Helpdesk support technicians reportedly spend an average of one-third of their workdays resetting passwords.

Now I understand that many of you felt a burning in the pit of your stomach when I stated that the goal was to allow users to do administrator’s tasks. For most of us, this just seems like an impossible goal. But it’s not.

ILM allows you to set up policies that allow users to do specific tasks. Let’s say a user goes to log into their network but they forget their password. Instead of calling IT or helpdesk, they can check a box labeled “Forgot Password.” A portal opens and the user is asked several security questions. If the answers are correct, the user can reset their password.
Think about a policy that allows managers to keep track of their own groups and distribution lists. Let’s say a new sales person is hired in your company. The sales manager can add that individual to the sales group and the sales distribution list. The new sales person will now have access to all the resources every other sales person has.

You may be thinking, “how does this help the IT department?” Well, first it helps IT save money. If administrators and IT professionals did not have to spend unproductive time doing some of these basic tasks, they could focus on important tasks.

Let’s say we have an administrator who makes $70,000 a year. For a 40-hour workweek, that’s about $35 an hour. Let’s say that administrator spends 10 to 15 hours a week on group management and resetting passwords. That’s a lot of money to pay someone to do a task that a basic user can now accomplish.

If users and managers could do some of the small day-to-day tasks that take up so much of our time, that would free us up to do some of the more important tasks we need to accomplish:

- System architecture
- System deployments
- System administration and auditing
- Creating security policies

Another advantage of ILM is that over 20 connectors are included with the installation. Connectors are software add-ons that allow different applications and servers to communicate with each other. Many other add-on connectors are also available and will allow you to connect a wide range of systems and applications quickly and easily.
Summary

In this chapter, we covered Active Directory fundamentals. We gave you a high-level overview of many concepts related to Active Directory and how it is logically laid out. We covered the benefits of deploying Active Directory, including its hierarchical organization, extensible schema, centralized data storage, replication, ease of administration, network security, client configuration management, scalability and performance, and its searching functionality.

You also learned about how the Active Directory compares to Windows NT’s domain model. As you might recall, Windows NT 4 uses a flat domain model, whereas Active Directory is robust, hierarchical, and scaleable and can grow far beyond NT 4’s limitations.

We went on to cover the logical components of Active Directory, such as forests, domains, trees, and objects, and how you can create multiple Active Directory domains and why you might do so. (For example, you can keep two companies’ internal system models separate if you have a merger and acquisition). We also covered the importance of how you name Active Directory objects and how domain naming affects the planning of Active Directory.

You then learned about the Windows Server 2008 server roles that are integrated with Active Directory. We covered the five main Windows Server 2008 Active Directory server roles (Active Directory Certificate Services, Active Directory Domain Services, Active Directory Federation Services, Active Directory Lightweight Directory Services, and Active Directory Rights Management Services).

Finally, we covered identity and access (IDA) solutions and how IDA can help an organization’s users stay safe and secure while entering their credentials.

In the next chapter, we will cover the Domain Name System (DNS).
Exam Essentials

Understand the problems that Active Directory is designed to solve. The creation of a single, centralized directory service can make network operations and management much simpler. Active Directory solves many shortcomings in Windows NT’s domain model.

Understand Active Directory design goals. Active Directory should be structured to mirror an organization’s logical structure. Understand the factors that you should take into account, including business units, geographic structure, and future business requirements.

Understand identity and access (IDA) solutions. Understand how IDA can help organizations solve the problems associated with multiple usernames and passwords. Understand how the Active Directory Windows Server 2008 server roles work with and affect IDA.
Chapter 1 • Overview of Active Directory

Review Questions

1. Which of the following is not a feature of Active Directory?
 A. The use of LDAP for transferring information
 B. Reliance on DNS for name resolution
 C. A flat domain namespace
 D. The ability to extend the schema

2. Domains provide which of the following functions?
 A. Creating security boundaries to protect resources and ease of administration
 B. Easing the administration of users, groups, computers, and other objects
 C. Providing a central database of network objects
 D. All of the above

3. You are the administrator for a large organization with multiple remote sites. Your supervisor would like to have remote sites log in locally to their own site but he is nervous about security. What type of server can you implement to ease their concerns?
 A. Domain controller
 B. Global Catalog
 C. Read-only domain controller
 D. Universal Group Membership Caching Server

4. Which of the following objects is used to create the logical structure within Active Directory domains?
 A. Users
 B. Sites
 C. Organizational units (OUs)
 D. Trees

5. Which of the following is false regarding the naming of Active Directory objects?
 A. Active Directory relies on DNS for name resolution.
 B. Two objects can have the same relative distinguished name.
 C. Two objects can have the same distinguished name.
 D. All objects within a domain are based on the name of the domain.

6. Which of the following are true regarding Active Directory trust relationships?
 A. Trusts are transitive.
 B. By default, trusts are two-way relationships.
 C. Trusts are used to allow the authentication of users between domains.
 D. All of the above.
7. Which of the following protocols is used to query Active Directory information?
 A. LDAP
 B. NetBEUI
 C. NetBIOS
 D. IPX/SPX

8. You are the administrator for a large organization. Your organization currently has a Windows Server 2003 domain. Your company has set up a domain-based password policy but the organization is unhappy with the requirement to have a single policy for all users. Your company is considering upgrading to Windows Server 2008. What feature will solve the problem of only one policy for all domain users?
 A. Microsoft Windows Server 2008 multi-password policy
 B. Fine-grained password policy
 C. Certificate server policy
 D. None of the above

9. What Windows Server 2008 server role allows a user to have a single sign-on (SSO) to access multiple applications?
 A. Active Directory Domain Services
 B. Active Directory Federation Services
 C. Active Directory Lightweight Directory Services
 D. Active Directory Rights Management Services

10. What are some of the advantages of using Windows Server 2008 Active Directory Certificate Services?
 A. Web enrollment
 B. Network Device Enrollment Service
 C. Online Responder
 D. All of the above

11. What Windows Server 2008 server role allows a user to secure an email while using Microsoft Office 2007 Outlook?
 A. Active Directory Domain Services
 B. Active Directory Federation Services
 C. Active Directory Rights Management Services
 D. Active Directory Lightweight Directory Services
12. Identity and access (IDA) has five distinct categories. What are they?
 A. Directory services, strong authentication, Federated Identities, information protection, and Identity Lifecycle Management
 B. Directory services, strong certificates, Federated Identities, data protection, and LDAP
 C. LDAP, strong authentication, Federated Identities, information protection, and Identity Lifecycle Management
 D. Directory services, basic authentication, Federated Identities, data protection, and Identity Lifecycle Management

13. You are the administrator for your company. Another administrator has changed a user’s group settings. What is the easiest way to get the original setting back for the user?
 A. Restore tapes.
 B. Perform auditing.
 C. Use a recovery disk.
 D. Enter safe mode and then restore from tape.

14. Which of the following features of Active Directory allows information between domain controllers to remain synchronized?
 A. Replication
 B. The Global Catalog
 C. The schema
 D. None of the above

15. Jane is a system administrator for a large, multidomain, geographically distributed network environment. The network consists of a large, central office and many smaller remote offices located throughout the world. Recently, Jane has received complaints about the performance of Active Directory–related operations from remote offices. Users complain that it takes a long time to perform searches for network resources (such as shared folders and printers). Jane wants to improve the performance of these operations. Which of the following components of Active Directory should she implement at remote sites to improve the performance of searches conducted for objects in all domains?
 A. Data store
 B. Global Catalog
 C. Schema
 D. None of the above

16. What is the name of the server that is a repository of Active Directory topology and schema information for Active Directory?
 A. Domain Partition
 B. Schema Master
 C. Global Catalog
 D. None of the above
17. You need to install the Active Directory Federation Services. What application do you use to do the install?
 A. Server Set-Up
 B. Role Manager
 C. Server Manager
 D. Add/Remove Programs—Services

18. What term is used to refer to the actual structure that contains the information stored within Active Directory?
 A. Schema
 B. Data store
 C. Global Catalog
 D. NTDS Storage group

19. You are the administrator for your company’s domain. You need to subdivide groups in your organization within Active Directory. If you wanted to separate Sales from Marketing, for example, what could you do to create a system of organizing this subdivision and any others that you need to divide?
 A. Create OUs.
 B. Use Users and Groups.
 C. Create a Sites and Services subnet grouping.
 D. Build a container in LM Manager.

20. You are the network administrator for a 200-node network. You are currently looking at creating software packages to roll out to your network users. When the users log in, they will automatically install needed updates. You need to roll out a specific set of updates to 30 of those nodes. What could you create so that you can separate those 30 from the 200 and roll out updates only to that group?
 A. A policy that deploys only to those 30 members
 B. A group assignment through Administrative Tools
 C. An organizational unit (OU) for those 30 users
 D. None of the above
Answers to Review Questions

1. C. Active Directory uses a hierarchical namespace for managing objects.

2. D. All of these options are features of domains and are reasons for their usefulness.

3. C. Windows Server 2008 has a new type of domain controller called a read-only domain controller (RODC). This gives an organization the ability to install a domain controller in an area or location (on or offsite) where security is a concern.

4. C. OUs are used for creating a hierarchical structure within a domain. Users are objects within the directory, sites are used for physical planning, and trees are relationships between domains.

5. C. The distinguished name of each object in Active Directory must be unique, but the relative distinguished names may be the same. For example, we might have a User object named Jane Doe in two different containers.

6. D. Trusts are designed for facilitating the sharing of information and have all of these features.

7. A. LDAP is the Internet Engineering Task Force (IETF) standard protocol for accessing information from directory services. It is also the standard used by Active Directory.

8. B. Fine-grained password policies allow an organization to have different password and account lockout policies for different sets of users in the same domain.

9. B. Active Directory Federation Services gives users the ability to do a SSO and access applications on other networks without a secondary password.

10. D. Web enrollment, certification authorities (CAs), the Network Device Enrollment Service, and the Online Responder are four advantages of Active Directory Certificate Services.

11. C. Active Directory Rights Management Services (AD RMS) is included with Microsoft Windows Server 2008. This service allows administrators or users to determine what access (open, read, modify, etc.) they give to other users in an organization. This access can be used to secure email messages, internal websites, and documents. Organizations can use AD RMS for confidential or critical information.

12. A. Directory services, strong authentication, Federated Identities, information protection, and Identity Lifecycle Management are the five categories for IDA.

13. B. With the Microsoft Windows Server 2008 auditing feature, you have the ability to view the new and the old values of the object and its attributes. After viewing the old values, you can restore them.

14. A. Replication ensures that information remains synchronized between domain controllers

15. B. The Global Catalog contains information about multiple domains and additional Global Catalog servers can greatly increase the performance of operations such as searches for shared folders and printers. The other options are features of Active Directory, but they are not designed for fast searching across multiple domains.
16. C. The Global Catalog is a repository of the Active Directory topology and schema information. The Global Catalog contains information about multiple domains. Adding more Global Catalog servers can greatly increase the performance of operations such as searches for shared folders and printers. The other options are features of Active Directory, but they are not designed for fast searching across multiple domains.

17. C. Server Manager is a Microsoft Management Console (MMC) snap-in that allows an administrator to view information about server configuration, status of roles that are installed, and links for adding and removing features and roles.

18. B. The term data store is used to refer to the actual structure that contains the information stored within Active Directory.

19. A. An OU is an organizational unit and is a container object that is an Active Directory administrative partition. OUs can contain users, groups, resources, and other OUs. You can use OUs to help build organization into your directory so that you can roll out software updates to groupings of users and computers. OUs enable the delegation of administration to very distinct subtrees of the directory. OUs can be departments or groups. They are used to structure and manage your network in a way that reflects a company’s business organization.

20. C. An OU is a container object that is used for administering an Active Directory database. OUs contain Active Directory objects. You can use OUs to help build organization into your directory so that you can roll out software updates to groupings of users and computers. OUs enable the delegation of administration to very distinct subtrees of the directory. OUs can be departments or groups. They are used to structure and manage your network in a way that reflects a company’s business organization.
Chapter 2

Domain Name System (DNS)

MICROSOFT EXAM OBJECTIVES COVERED IN THIS CHAPTER:

✓ Configuring Domain Name System (DNS) for Active Directory
 - Configure zones. May include but is not limited to: Dynamic DNS (DDNS), Non-dynamic DNS (NDDNS), and Secure Dynamic DNS (SDDNS); Time to Live (TTL); GlobalNames; Primary, Secondary, Active Directory Integrated, Stub; SOA; zone scavenging; forward lookup; reverse lookup
 - Configure DNS server settings. May include but is not limited to: forwarding; root hints; configure zone delegation; round robin; disable recursion; debug logging; server scavenging
 - Configure zone transfers and replication. May include but is not limited to: configure replication scope (forestDNSzone; domainDNSzone); incremental zone transfers; DNS Notify; secure zone transfers; configure name servers; application directory partitions
The Domain Name System (DNS) is one of the most important topics that you need to know about if you are planning on taking any of the Microsoft administration exams (70-640, 70-642, etc.). It’s also imperative that you understand DNS in order to work with Active Directory, because Active Directory requires DNS to function properly.

DNS is a requirement of Active Directory and many important system functions (including Kerberos authentication and finding domain controllers) are handled through DNS lookups. Windows 2000, XP, and Vista clients use DNS for name resolution and to find Kerberos key distribution centers (KDCs), Global Catalog servers, and other services that may be registered in DNS.

By the time you finish this chapter, you will have a deeper understanding of how DNS works and how to set up, configure, manage, and troubleshoot DNS in Microsoft Windows Server 2008.

Introducing DNS

The Domain Name System (DNS) is a service designed to resolve Internet Protocol (IP) addresses to hostnames. One of the inherent complexities of working in networked environments is working with multiple protocols and network addresses. Thanks largely to the tremendous rise in popularity of the Internet, however, most environments have transitioned to use TCP/IP (Transmission Control Protocol/Internet Protocol) as their primary networking protocol. Microsoft is no exception when it comes to supporting TCP/IP in its workstation and server products. All current versions of Microsoft’s operating systems support TCP/IP, as do most other modern operating systems. Since the introduction of Windows NT 4, TCP/IP has been the default protocol installed with Microsoft operating systems.

TCP/IP is actually a collection of different technologies (protocols and services) that allow computers to function together on a single, large, heterogeneous network. Some of the major advantages of this protocol include widespread support for hardware, software, and network devices; reliance on a system of standards; and scalability. TCP handles tasks such as sequenced acknowledgments. IP involves many issues such as logical subnet assignment and routing.
Introducing DNS

It is beyond the scope of this chapter to fully describe the intricacies of working with TCP/IP; full details are covered in stand-alone volumes.

The Form of an IP Address

To understand DNS, you must first understand how TCP/IP addresses are formed. Since DNS is strictly on a network to support TCP/IP, understanding the basics of TCP/IP is very important.

Microsoft exams are going to cover TCP/IP in depth. For more information on IPv4 and IPv6, read MCTS Windows Server 2008 Network Infrastructure Configuration (Exam 70-642, with CD) by Will Panek, Tylor Wentworth, and James Chellis (Sybex, 2008).

An IP address is a logical number that uniquely identifies a computer on a TCP/IP network. TCP/IP allows a computer packet to reach the correct host. Windows Server 2008 works with two versions of TCP/IP: IPv4 and IPv6. An IPv4 address takes the form of four octets (eight binary bits), each of which is represented by a decimal number between 0 and 255. The four numbers are separated by decimal points. For example, all of the following are valid IP addresses:

- 128.45.23.17
- 230.212.43.100
- 10.1.1.1

The dotted decimal notation was created to make it easier for users to deal with IP addresses, but this idea did not go far enough. As a result, another abstraction layer that used names to represent the dotted decimal notation was developed—the domain name. For example, the IP address 11000000 10101000 00000001 00010101 maps to 192.168.1.21, which in turn might map to server1.company.org—how the computer’s address is usually presented to the user or application.

As stated above, IPv4 addresses are made up of octets or the decimal (base 10) representation of 8 bits. It takes four octets to add up to the 32 bits required. IPv6 expands the address space to 128 bits. The address is usually represented in hexadecimal notation, like this:

```
2001:0DB8:0000:0000:1234:0000:A9FE:133E
```

You can tell the implementation of DNS will make life a lot easier for everyone, even those of us who like to use alphanumeric values (for example, some of us enjoy pinging the address
in lieu of the name). Fortunately, DNS already has the ability to handle IPv6 address using an AAAA record. An A record in IPv4’s addressing space is 32 bits, and an AAAA record (4 A’s) in IPv6’s is 128 bits.

Nowadays, most computer users are quite familiar with navigating to DNS-based resources, such as www.microsoft.com. In order to resolve these “friendly” names to TCP/IP addresses that the network stack can use, you must have some method for mapping them. Originally, ASCII flat files (often called HOSTS files, as seen in Figure 2.1) were used for this purpose.

In some cases, they are still used today in very small networks, and they can be used to help troubleshoot name resolution problems.

As the number of machines and network devices grew, it became unwieldy for administrators to manage all of the manual updates required to enter new mappings to a master HOSTS file and distribute it. Clearly, a better system was needed.

FIGURE 2.1 Sample HOSTS file

As you can see from the sample HOSTS file in Figure 2.1, you can conduct a quick test of the email server’s name resolution.

1. Open the HOSTS file <C:\Windows\Systems32\drivers\etc>.
2. Add the IP address–to–hostname mapping.
3. Try to ping the server using the hostname to verify that you can reach it using an easy-to-remember name.

Following these steps should drive home the concept of DNS for you because you can see it working to make your life easier. Now you don’t have to remember 10.0.0.10; you only need to remember exchange03.

You can also see how this method can become unwieldy if you have many hosts that want to use easy-to-remember names instead of IP addresses to locate resources on your network.
When dealing with large networks, both users and network administrators must be able to locate the resources they require with minimal searching. Users don’t care about the actual physical or logical network address of the machine; they just want to be able to connect to it using a simple name that they can remember. From a network administrator’s standpoint, however, each machine must have its own logical address that makes it part of the network on which it resides. Therefore, some scalable and easy-to-manage method for resolving a machine’s logical name to an IP address and then to a domain name is required. DNS was created for this purpose.

DNS is a hierarchically distributed database. In other words, its layers are arranged in a definite order, and its data is distributed across a wide range of machines, each of which can exert control over a portion of the database. DNS is a standard set of protocols that defines the following:

- A mechanism for querying and updating address information in the database
- A mechanism for replicating the information in the database among servers
- A schema of the database

DNS is defined by a number of RFCs, though primarily by RFC 1034 and RFC 1035.

DNS was originally developed in the early days of the Internet when the Internet (called ARPAnet at the time) was a small network created by the Department of Defense for research purposes. Before DNS, computer names, or hostnames, were manually entered into a HOSTS file located on a centrally administered server. Each site that needed to resolve hostnames outside of its organization had to download this file. As the number of computers on the Internet grew, so did the size of this HOSTS file, as well as the problems with its management. The need for a new system that would offer features such as scalability, decentralized administration, and support for various data types became more and more obvious. DNS, introduced in 1984, became this new system.

With DNS, the hostnames reside in a database that can be distributed among multiple servers, decreasing the load on any one server and providing the ability to administer this naming system on a per-partition basis. DNS supports hierarchical names and allows registration of various data types in addition to the hostname-to-IP address mapping used in HOSTS files. Database performance is ensured through its distributed nature as well as through caching.

The DNS distributed database establishes an inverted logical tree structure called the domain namespace. Each node, or domain, in that space has a unique name. At the top of the tree is the root. This may not sound quite right, which is why the DNS hierarchical model is described as being an inverted tree, with the root at the top. The root is represented by the null set " ". When written, the root node is represented by a single dot " . ".

Each node in the DNS can branch out to any number of nodes below it. For example, below the root node are a number of other nodes, commonly referred to as top-level domains (TLDs).
These are the familiar com, net, org, gov, edu, and other such names. Table 2.1 lists some of these TLDs.

Table 2.1 Common Top-Level DNS Domains

<table>
<thead>
<tr>
<th>Common Top-Level Domain Names</th>
<th>Type of Organization</th>
</tr>
</thead>
<tbody>
<tr>
<td>com</td>
<td>Commercial (for example, stellacon.com for Stellacon Training Corporation)</td>
</tr>
<tr>
<td>edu</td>
<td>Educational (for example, gatech.edu for the Georgia Institute of Technology)</td>
</tr>
<tr>
<td>gov</td>
<td>Government (for example, whitehouse.gov for the White House in Washington, D.C.)</td>
</tr>
<tr>
<td>int</td>
<td>International organizations (for example, nato.int for NATO). This top-level domain is fairly rare.</td>
</tr>
<tr>
<td>mil</td>
<td>Military organizations (for example, usmc.mil for the Marine Corps). There is a separate set of root name servers for this domain.</td>
</tr>
<tr>
<td>net</td>
<td>Networking organizations and Internet providers (for example, hiwaay.net for HiWAAY Information Systems). Many commercial organizations have registered names under this domain, too.</td>
</tr>
<tr>
<td>org</td>
<td>Noncommercial organizations (for example, Fidonet.org for FidoNet)</td>
</tr>
<tr>
<td>au</td>
<td>Australia</td>
</tr>
<tr>
<td>uk</td>
<td>United Kingdom</td>
</tr>
<tr>
<td>ca</td>
<td>Canada</td>
</tr>
<tr>
<td>us</td>
<td>United States</td>
</tr>
<tr>
<td>jp</td>
<td>Japan</td>
</tr>
</tbody>
</table>

Each of these nodes then branches out into another set of domains and they combine to form what we refer to as domain names, such as microsoft.com. A domain name identifies the domain’s position in the logical DNS hierarchy in relation to its parent domain by separating...
Introducing DNS

each branch of the tree with a period. Figure 2.2 shows a few of the top-level domains, where the Microsoft domain fits, and a host called Tigger within the microsoft.com domain. If someone wanted to contact that host, they would use the fully qualified domain name (FQDN), tigger.microsoft.com.

An FQDN includes the trailing dot (.) to indicate the root node, but it’s commonly left off in practice.

FIGURE 2.2 The DNS hierarchy

As previously stated, one of the strengths of DNS is the ability to delegate control over portions of the DNS namespace to multiple organizations. For example, the Internet Corporation for Assigned Names and Numbers (ICANN) assigns the control over the TLDs to one or more organizations. Those organizations in turn delegate portions of the DNS namespace to other organizations. For example, when we register a domain name—let’s call it example.com—we control the DNS for the portion of the DNS namespace within example.com. The registrar controlling the .com TLD has delegated control over the example.com node in the DNS tree. No other node can be named example directly below the .com within the DNS database.

Within the portion of the domain namespace that we control (example.com), we could create host records and other records (more on these later). We could also further subdivide example.com and delegate control over those divisions to other organizations or departments. These divisions are called subdomains. For example, we might create subdomains named for the cities in which the company has branch offices and then delegate control over those...
subdomains to the branch offices. The subdomains might be named losangeles.example.com, chicago.example.com, portsmouth.example.com, and so on.

Each domain (or delegated subdomain) is associated with DNS name servers. In other words, for every node in the DNS, one or more servers can give an authoritative answer to queries about that domain. At the root of the domain namespace are the root servers. More on these later.

Domain names and hostnames must contain only characters a to z, A to Z, 0 to 9, and _ (hyphen). Other common and useful characters, like the & (ampersand), / (slash), . (period), and _ (underscore) characters, are not allowed. This is in conflict with NetBIOS’s naming restrictions. However, you’ll find that Windows Server 2008 is smart enough to take a NetBIOS name, like Server_1, and turn it into a legal DNS name, like server1.example.com.

DNS servers work together to resolve hierarchical names. If a server already has information about a name, it simply fulfills the query for the client. Otherwise, it queries other DNS servers for the appropriate information. The system works well because it distributes the authority over separate parts of the DNS structure to specific servers. A DNS zone is a portion of the DNS namespace over which a specific DNS server has authority (DNS zone types are discussed in detail later in this chapter).

There is an important distinction to make between DNS zones and Active Directory (AD) domains. Although both use hierarchical names and require name resolution, DNS zones do not map directly to AD domains.

Within a given DNS zone, resource records (RRs) contain the hosts and other database information that make up the data for the zone. For example, an RR might contain the host entry for www.example.com pointing it to the IP address 192.168.1.10.

Understanding Servers, Clients, and Resolvers

You will need to know a few terms and concepts in order to manage a DNS server. Understanding these terms will make it easier to understand how the Windows Server 2008 DNS server works:

DNS server Any computer providing domain name services is a DNS name server. No matter where the server resides in the DNS namespace, its still a DNS name server. For example, 13 root name servers at the top of the DNS tree are responsible for delegating the TLDs. The root servers provide referrals to name servers for the TLDs, which in turn provide referrals to an authoritative name server for a given domain.
The Berkeley Internet Name Domain (BIND) was originally the only software for running the root servers on the Internet. However, a few years ago the organizations responsible for the root servers undertook an effort to diversify the software running on these important machines. Today, root servers run multiple kinds of name server software. BIND is still primary, however, and it is the most popular for Internet providers as well. None of the root servers run Windows DNS.

Any DNS server implementation supporting Service Location Resource Records (see RFC 2782) and Dynamic Updates (RFC 2136) is sufficient to provide the name service for any operating system running Windows 2000 software and above.

DNS client A DNS client is any machine that issues queries to a DNS server. The client hostname may or may not be registered in a DNS database. Clients issue DNS requests through processes called resolvers. You’ll sometimes see the terms client and resolver used synonymously.

Resolver Resolvers are software processes, sometimes implemented in software libraries, that handle the actual process of finding the answers to queries for DNS data. The resolver is also built into many larger pieces of software so that external libraries don’t have to be called in order to make and process DNS queries. Resolvers can be what you’d consider client computers or other DNS servers attempting to resolve an answer on behalf of a client.

Query A query is a request for information sent to a DNS server. Three types of queries can be made to a DNS server: recursive, inverse, and iterative. We’ll discuss their differences in the following section.

Understanding the DNS Process

To help you understand the DNS process, we will start by covering the differences between Dynamic DNS and Non-Dynamic DNS. During this discussion you will learn how Dynamic DNS populates the DNS database. You’ll also see how to implement security for Dynamic DNS. We will then talk about the workings of different types of DNS queries. Finally we will discuss caching and time to live (TTL). You’ll learn how to determine the best setting for your organization.

Dynamic DNS and Non-Dynamic DNS

To understand Dynamic DNS and Non-Dynamic DNS, you must go back in time (here is where the TV screen always used to get wavy). Many years ago when we all worked on NT 3.51 and NT 4.0, most networks used *Windows Internet Name Service (WINS)* to do their TCP/IP name resolution. Windows versions 95/98 and NT 4.0 Professional were all built on the idea of using WINS. This worked out well for administrators because WINS was *dynamic* (which meant that, once it was installed, it automatically built its own database). Back
then, there was no such thing as Dynamic DNS; administrators had to manually enter DNS records into the server. This is important to know even today. If you have clients still running any of these older operating systems (95/98 or NT 4) these clients cannot use Dynamic DNS.

Now let’s move forward in time to the release of Windows Server 2000. Microsoft announced that DNS was going to be the name resolution method of choice. Many administrators (me included) did not look forward to the switch. Because there was no such thing as Dynamic DNS, most administrators had nightmares about manually entering records. But luckily for us, when Microsoft released Windows Server 2000, DNS had the ability to be dynamic.

Now, when you’re setting up Windows Server 2008 DNS, you can choose what type of dynamic update you would like to use, if any. Let’s talk about why you would want to choose one over the other.

The Dynamic DNS (DDNS) standard, described in RFC 2136, allows DNS clients to update information in the DNS database files. For example, a Windows Server 2008 DHCP server can automatically tell a DDNS server which IP addresses it has assigned to what machines. Windows 2000, 2003, 2008, XP Pro, and Vista DHCP clients can do this, too—but for security reasons it’s better to let the DHCP server do it. The result: IP addresses and DNS records stay in sync so that you can use DNS and DHCP together seamlessly.

Because DDNS is a proposed Internet standard, you can even use Windows Server 2008’s DDNS-aware parts with Unix/Linux (*nix)-based DNS servers.

Non-Dynamic DNS (NDDNS) does not automatically populate the DNS database. The client systems do not have the ability to update to DNS.

If you decide to use Non-Dynamic DNS, an administrator will need to populate the DNS database manually. Non-Dynamic DNS is a reasonable choice if your organization is small to mid-sized and you do not want extra network traffic (clients updating to the DNS server), or if you need to manually enter the computer due to strict security measures.

Dynamic DNS has the ability to be secure, and the chances are slim that a rogue system (a computer that does not belong in your DNS database) could update to a secure DNS server. Nevertheless, some organizations have to follow stricter security measures and are not allowed to have dynamic updates.

The major downside to manually entering records into DNS occurs when the organization is using the Dynamic Host Configuration Protocol (DHCP). When using DHCP, it is possible for users to end up with different TCP/IP addresses every day. This means that an administrator has to manually update DNS daily to keep it accurate.

If you decide to allow Dynamic DNS, you need to decide how you want to set it up. When setting up dynamic updates on your DNS server, you have three choices (see Figure 2.3):

- None—This means your DNS server is Non-Dynamic.
- Nonsecure and secure—This means that any machine (even if it does not have a domain account) can register with DNS. Using this setting could allow rogue systems to enter records into your DNS server.
Secure only—This means that only machines with accounts in Active Directory can register with DNS. Before DNS registers any account in its database, it checks Active Directory to make sure that account is an authorized domain computer.

FIGURE 2.3 Setting the Dynamic Updates option

How Dynamic DNS Populates the DNS Database

On a Microsoft Windows Server 2008 network, TCP/IP is the protocol used for network communications. Users have two ways to receive a TCP/IP number:

- **Static** (administrators manually enter the TCP/IP information)
- **Dynamic** (using DHCP)

When an administrator sets up TCP/IP, DNS can also be configured. Once a client gets the address of the DNS server, if that client is allowed to update with DNS, the client sends a registration to DNS or requests DHCP to send the registration. DNS then does one of two things, depending on which Dynamic Updates option is specified:

- Check with Active Directory to see if that computer has an account (Secure Only updates) and if it does, enter the record into the database
- Enter the record into its database (Nonsecure and Secure updates)

What if you have clients (95/98 and NT 4) that cannot update DNS? Well there is a solution—DHCP. In the DNS tab of the IPv4 Properties window, check the option labeled “Dynamically update DNS A and PTR records for DHCP clients that do not request updates (for example, clients running Windows NT 4.0)” (See Figure 2.4).
DHCP, along with Dynamic DNS clients, allows an organization to dynamically update its DNS database without the time and effort of having an administrator manually enter DNS records.

DNS Queries
As stated earlier, a client can make three types of queries to a DNS server: recursive, inverse, and iterative. Remember that the client of a DNS server can be a resolver (what you'd normally call a client) or another DNS server.

Iterative Queries
Iterative queries are the easiest to understand: A client asks the DNS server for an answer, and the server returns the best answer. This information likely comes from the server’s cache. The server never sends out an additional query in response to an iterative query. If the server doesn’t know the answer, it may direct the client to another server through a referral.

Recursive Queries
In a recursive query, the client sends a query to a name server, asking it to respond either with the requested answer or with an error message. The error states one of two things:
- The server can’t come up with the right answer.
- The domain name doesn’t exist.
In a recursive query, the name server isn’t allowed to just refer the client to some other name server.

Most resolvers use recursive queries. In addition, if your DNS server uses a forwarder, the requests sent by your server to the forwarder will be recursive queries.

Figure 2.5 shows an example of both recursive and iterative queries. In this example, a client within the Microsoft Corporation is querying its DNS server for the IP address for \texttt{www.whitehouse.gov}. Here’s what happens to resolve the request:

FIGURE 2.5 A sample DNS query

1. The resolver sends a recursive DNS query to its local DNS server asking for the IP address of \texttt{www.whitehouse.gov}.

 The local name server is responsible for resolving the name and cannot refer the resolver to another name server.

2. The local name server checks its zones and finds no zones corresponding to the requested domain name.

3. The root name server has authority for the root domain and will reply with the IP address of a name server for the .\texttt{gov} top-level domain.

4. The local name server sends an iterative query for \texttt{www.whitehouse.gov} to the Gov name server.
5. The Gov name server replies with the IP address of the name server servicing the whitehouse.gov domain.

6. The local name server sends an iterative query for www.whitehouse.gov to the whitehouse.gov name server.

7. The whitehouse.gov name server replies with the IP address corresponding to www.whitehouse.gov.

8. The local name server sends the IP address of www.whitehouse.gov back to the original resolver.

Inverse Queries

Inverse queries use pointer (PTR) records. Instead of supplying a name and then asking for an IP address, the client first provides the IP address and then asks for the name. Because there’s no direct correlation in the DNS namespace between a domain name and its associated IP address, this search would be fruitless without the use of the in-addr.arpa domain. Nodes in the in-addr.arpa domain are named after the numbers in the dotted-octet representation of IP addresses. But because IP addresses get more specific from left to right and domain names get less specific from left to right, the order of IP address octets must be reversed when building the in-addr.arpa tree. With this arrangement, administration of the lower limbs of the DNS in-addr.arpa tree can be given to companies as they are assigned their Class A, B, or C subnet address or delegated even further down thanks to Variable Length Subnet Masking (VSLM).

Once the domain tree is built into the DNS database, a special PTR record is added to associate the IP addresses to the corresponding hostnames. In other words, to find a hostname for the IP address 206.131.234.1, the resolver would query the DNS server for a PTR record for 1.234.131.206.in-addr.arpa. If this IP address is outside the local domain, the DNS server would start at the root and sequentially resolve the domain nodes until arriving at 234.131.206.in-addr.arpa, which would contain the PTR record for the desired host.

Caching and Time to Live

When a name server is processing a recursive query, it may be required to send out several queries to find the definitive answer. Name servers, acting as resolvers, are allowed to cache all the received information during this process; each record contains information called time to live (TTL). The TTL specifies how long the record will be held in the local cache until it must be resolved again. If a query comes in that can be satisfied by this cached data, the TTL that’s returned with it equals the current amount of time left before the data is flushed.

There is also a negative cache TTL. The negative cache TTL is used when an authoritative server responds to a query indicating that the record queried doesn’t exist and indicates the amount of time that this negative answer may be held. Negative caching is quite helpful in preventing repeated queries for names that don’t exist.

The administrator for the DNS zone sets TTL values for the entire zone. The value can be the same across the zone or the administrator can set a separate TTL for each RR within the zone. Client resolvers also have data caches and honor the TTL value so that they know when to flush.
Introducing DNS Database Zones

As we mentioned earlier in this chapter, a DNS zone is a portion of the DNS namespace over which a specific DNS server has authority. Within a given DNS zone there are resource records.

Choosing Appropriate TTL Values

For zones that you administer, you can choose the TTL values for the entire zone, for negative caching, and for individual records. Choosing an appropriate TTL depends on a number of factors, including the following:

- Amount of change you anticipate for the records within the zone
- Amount of time that you can withstand an outage that might require changing an IP address
- Amount of traffic that you feel the DNS server can handle

Resolvers query the name server every time the TTL expires for a given record. A low TTL, say, 60 seconds, can burden the name server, especially for popular DNS records. DNS queries aren’t particularly intensive for a server to handle, but they can add up quickly if you mistakenly use 60 seconds instead of 600 seconds for the TTL on a popular record. Set a low TTL only when you need to quickly respond to a changing environment.

A high TTL, say, 604,800 seconds (that’s 1 week), means that if you need to make a change to the DNS record, clients might not see the change for up to a week. This consideration is especially important when making changes to the network, and it’s one that’s all too frequently overlooked. We can’t count the times we’ve worked with clients who have recently made a DNS change to a new IP for their email or website, only to ask why it’s not working for some clients. The answer can be found in the TTL value. If the record is being cached, then the only thing that can solve their problem is time.

You should choose a TTL that’s appropriate for your environment. Take the following factors into account:

- The amount of time that you can afford to be offline if you need to make a change to a DNS record that’s being cached
- The amount of load that a low TTL will cause on the DNS server

In addition, you should plan well ahead of any major infrastructure changes and change the TTL to a lower value in order to lessen the effect of the downtime by reducing the amount of time that the record(s) can be cached.
The DNS zones discussed in this book are all Microsoft Windows Server 2008 zones. Non-Windows (e.g., Unix) systems set up their DNS zones differently.

In the following sections, we will discuss the different zone types and their characteristics.

Understanding Primary Zones

When you’re learning about zone types, things can get a bit confusing. But it’s really not difficult to understand how they work and why you would want to choose one type of zone over the other.

Zones are databases that store records. By choosing one zone type over another, you are basically just choosing how the database works and how it will be stored on the server.

The primary zone is responsible for maintaining all of the records for the DNS zone. It contains the primary copy of the DNS database. All record updates occur on the primary zone. You will want to create and add primary zones whenever you create a new DNS domain.

There are two types of primary zone:

- Primary zone
- Primary zone with Active Directory Integration (Active Directory DNS)

From this point forward, we refer to a primary zone with Active Directory Integration as an Active Directory DNS. When we just use the term primary zone, Active Directory is not included.

To install DNS as a primary zone, first you must install DNS using the Server Manager MMC. Once DNS is installed and running, you create a new zone and specify it as a primary zone.

The process of installing DNS and its zones will be discussed later in this chapter. In addition, we’ve included step-by-step labs that walk you through how to install these components.

Primary zones have advantages and disadvantages. Knowing the characteristics of a primary zone will help you decide when you need the zone and when it fits into your organization.

Local Database

Primary DNS zones get stored locally in a file (with the suffix .dns) on the server. This allows you to store a primary zone on a domain controller or a member server. In addition, by loading
DNS onto a member server, you can help a small organization conserve resources. Such an organization may not have the resources to load DNS on an Active Directory domain controller.

Unfortunately the local database has many disadvantages:

Lack of fault tolerance Think of a primary zone as a contact list on your cell phone or handheld. All of the contacts in the list are the records in your database. The problem is that if you lose your phone or the phone breaks, you lose your contact list. Until your phone gets fixed or you swap out your phone card, the contacts are unavailable.

It works the same way with a primary zone. If the server goes down or you lose the hard drive, DNS records on that machine are unreachable. An administrator can install a secondary zone (explained later in this section) and that provides temporary fault tolerance. Unfortunately, if the primary zone is down for an extended period of time, the secondary server’s information will no longer be valid.

Additional network traffic Let’s imagine that you are looking for a contact number for John Smith. John Smith is not listed in your cell phone directory, but he is listed in your partner’s cell phone. You have to contact your partner to get the listing. You cannot directly access your partner’s cell contacts.

When a resolver sends a request to DNS to get the TCP/IP address for Jsmith (in this case Jsmith is a computer name), and the DNS server does not have an answer, it does not have the ability to check the other server’s database directly to get an answer. So it forwards the request to another DNS. This causes additional network traffic. When DNS servers are replicating zone databases with other DNS servers, this causes additional network traffic.

No security Staying with the cell phone example, let’s say you call your partner looking for John Smith’s phone number. When your partner gives you the phone number over your wireless phone, someone with a scanner can pick up your conversation. Unfortunately wireless telephone calls are not very secure.

Now a resolver asks a primary zone for the Jsmith TCP/IP address. If someone on the network has a *packet sniffer*, they can steal the information in the DNS packets being sent over the network. The packets are not secure unless you implement some form of secondary security. Also, the DNS server has the ability to be dynamic. A primary zone accepts all updates from DNS servers. You cannot set it to accept secure updates only.

Understanding Secondary Zones

In Windows Server 2008 DNS, you have the ability to use secondary DNS zones. Secondary zones are non-editable copies of the DNS database. You use them for *load balancing* (also referred to as *load sharing*)—a way of managing network overloads on a single server. A secondary zone gets its database from a primary zone.

A secondary zone contains a database with all the same information as the primary zone and can be used to resolve DNS requests. Secondary zones have the following advantages:

- A secondary zone provides fault tolerance, so if the primary zone server becomes unavailable, name resolution can still occur using the secondary zone server.
It is a good general practice to ensure that each zone has at least one secondary zone server to protect against failures.

- Secondary DNS servers can also increase network performance by offloading some of the traffic that would otherwise go to the primary server.

Secondary servers are often placed within the parts of an organization that have high-speed network access. This prevents DNS queries from having to run across slow wide area network (WAN) connections. For example, if there are two remote offices within the stellacon.com organization, you may want to place a secondary DNS server in each remote office. This way, when clients require name resolution, they will contact the nearest server for this IP address information, thus preventing unnecessary WAN traffic.

Having too many secondary zone servers can actually cause an increase in network traffic due to replication (especially if DNS changes are fairly frequent). Therefore, you should always weigh the benefits and drawbacks and properly plan for secondary zone servers.

Understanding Active Directory Integrated DNS

In Windows Server 2000, Active Directory Integrated DNS was introduced to the world. This zone type was unique and was a separate choice during setup. In Windows Server 2003, this zone type became an add-on to a primary zone. In Windows Server 2008, it works the same way. After choosing to set up a primary zone, you check the box labeled “Store the zone in Active Directory” (See Figure 2.6).

FIGURE 2.6 Setting up an Active Directory Integrated Zone
Microsoft covers Active Directory Integrated DNS on most of the DNS-related exams. Knowing the characteristics of this zone type will help you answer many exam questions. Remember, this is an Active Directory Exam (70-640), so you can bet that the Active Directory portion of DNS will be covered in depth.

Disadvantages of Active Directory Integrated DNS

The main disadvantage of Active Directory Integrated DNS is that it has to reside on a domain controller because the DNS database is stored in Active Directory. As a result, you cannot load this zone type on a member server, and small organizations might not have the resources to set up a dedicated domain controller.

Advantages of Active Directory Integrated DNS

The advantages of using an Active Directory Integrated DNS zone well outweigh the disadvantage just discussed. The following are some of the major advantages to an Active Directory Integrated zone:

Full fault tolerance Think of an Active Directory Integrated zone as a database on your server that stores contact information for all your clients. If you need to retrieve John Smith’s phone number, as long as it was entered, you can look it up on the software.

If John Smith’s phone number was stored only on your computer and your computer stopped working, no one could access John Smith’s phone number. But since John Smith’s phone number is stored in a database that everyone has access to, if your computer stops working, other users can still retrieve John Smith’s phone number.

An Active Directory Integrated zone works the same way. Since the DNS database is stored in Active Directory, all Active Directory DNS servers can have access to the same data. If one server goes down or you lose a hard drive, all other Active Directory DNS servers can still retrieve DNS records.

No additional network traffic As previously discussed, an Active Directory Integrated zone is stored in Active Directory. Since all records are now stored in Active Directory, when a resolver needs a TCP/IP address for Jsmith, any Active Directory DNS server can access Jsmith’s address and respond to the resolver.

When you choose an Active Directory Integrated zone, DNS zone data can be replicated automatically to other DNS servers during the normal Active Directory replication process.

DNS security An Active Directory Integrated zone has a few security advantages over a primary zone:

- An Active Directory Integrated zone can use secure dynamic updates.
- As explained earlier, the Dynamic DNS standard allows secure-only updates or dynamic updates, not both.
If you choose secure updates, then only machines with accounts in Active Directory can register with DNS. Before DNS registers any account in its database, it checks Active Directory to make sure it is an authorized domain computer.

An Active Directory Integrated zone stores and replicates its database through Active Directory replication. Because of this, the data gets encrypted as it is sent from one DNS server to another.

Background zone loading Background zone loading (discussed in more detail later in this chapter) allows an Active Directory Integrated DNS zone to load in the background. As a result, a DNS server can service client requests while the zone is still loading into memory.

Understanding Stub Zones

Stub zones work a lot like secondary zones—the database is a non-editable copy of a primary zone. The difference is that the stub zone’s database contains only the information necessary (three record types) to identify the authoritative DNS servers for a zone (see Figure 2.7). You should not use stub zones to replace secondary zones, nor should you use them for redundancy and load balancing.

FIGURE 2.7 DNS stub zone type

Stub zone databases only contain three record types: name server (NS), start of authority (SOA), and glue host (A) records. Knowing about these records will help on the Microsoft Certification Exams. Microsoft asks many questions about stub zones on all DNS related exams.
Introducing DNS Database Zones

Zone Transfers and Replication

DNS is such an important part of the network that you should not just use a single DNS server. With a single DNS server you also have a single point of failure, and, in fact, many domain registrars encourage the use of more than two name servers for a domain. Secondary servers or multiple primary Active Directory Integrated servers play an integral role in providing DNS information for an entire domain.

As previously stated, secondary DNS servers receive their zone databases through zone transfers. When you configure a secondary server for the first time, you must specify the primary server that is authoritative for the zone and that will send the zone transfer. The primary server must also permit the secondary server to request the zone transfer.

Zone transfers occur in one of two ways: full zone transfers (AXFR) and incremental zone transfers (IXFR).

Real World Scenario

When to Use Stub Zones

(Continued from previous page)

Stub zones become particularly useful in a couple of different scenarios.

Consider what happens when two large companies merge: example.com and example.net. In most cases, the DNS zone information from both companies must be available to every employee. You could set up a new zone on each side that acts as a secondary for the other side’s primary zone, but administrators tend to be very protective of their DNS databases and they probably wouldn’t agree to this plan.

A better solution is to add a stub zone to each side that points to the primary server on the other side. When a client in example.com (which you help administer) makes a request for a name in example.net, the stub zone on the example.com DNS server would send the client to the primary DNS server for example.net without actually resolving the name. At this point it would be up to example.net’s primary server to resolve the name.

An added benefit is that even if the administrators over at example.net change their configuration, you won’t have to do anything because the changes will automatically replicate to the stub zone, just as they would for a secondary server.

Stub zones can also be useful when you administer two domains across a slow connection.

Let’s change the example above a bit and assume that you have full control over example.com and example.net, but they connect through a 56k line. In this case, you wouldn’t necessarily mind using secondary zones because you personally administer the entire network, but it could get messy to replicate an entire zone file across that slow line. Instead, stub zones would refer clients to the appropriate primary server at the other site.
When a new secondary server is configured for the first time, it receives a full zone transfer from the primary DNS server. The full zone transfer contains all of the information in the DNS database. Some DNS implementations always receive full zone transfers.

After the secondary server receives its first full zone transfer, subsequent zone transfers are incremental. The primary name server compares its zone version number with that on the secondary server and sends only the changes that have been made in the interim. This significantly reduces network traffic generated by zone transfers.

Windows NT 4 does not support incremental zone transfers.

Zone transfers are typically initiated by the secondary server when the refresh interval time for the zone expires or when the secondary or stub server boots. Alternatively, you can configure notify lists on the primary server that send a message to the secondary or stub servers whenever any changes to the zone database occur.

When you consider your DNS strategy, you must carefully consider the layout of your network. If you have a single domain with offices in separate cities, you want to reduce the number of zone transfers across the potentially slow or expensive WAN links, although this is becoming less of a concern as bandwidth seems to multiply daily.

Active Directory Integrated zones do away with traditional zone transfers altogether. Instead, they replicate across Active Directory with all of the other AD information. This replication is secure since it uses the Active Directory Security.

How DNS Notify Works

Windows Server 2008 supports DNS Notify. DNS Notify is a mechanism that allows the process of initiating notifications to secondary servers when zone changes occur (RFC 1996). DNS Notify uses a push mechanism for communicating to a select set of secondary zone servers when their zone information is updated. (DNS Notify does not allow you to configure a notify list for a stub zone.)

After being notified of the changes, secondary servers can then start a pull zone transfer and update their local copies of the database.

Many different mechanisms use the push/pull relationship. Normally one object pushes information to another and that other object pulls the information from the first. Most applications push replication on a change value and pull it on a time value. For example, a system can push replication after 10 updates or it can be pulled every 30 minutes.

To configure the DNS Notify process, you create a list of secondary servers to notify. List the IP address of the server in the primary masters Notify dialog box (See Figure 2.8). The Notify dialog box is located under the Zone Transfers tab, which is located under the Zone Properties dialog box (See Figure 2.9).
FIGURE 2.8 DNS Notify dialog box

FIGURE 2.9 DNS Zone Transfers tab
Configuring Stub Zone Transfers with Zone Replication Scope

In the preceding section, we talked about how to configure secondary server zone transfers. What if you wanted to configure settings for stub zone transfers? This is where zone replication scope comes in.

Only Active Directory–integrated primary and stub zones can configure their replication scope. Secondary servers do not have this ability.

You can configure zone replication scope configurations in two ways. An administrator can set configuration options through the DNS snap-in or through a command-line tool called Dnscmd.

To configure zone replication scope through the DNS snap-in, follow these steps:

1. Click Start ➤ Administrative Tools ➤ DNS.
2. Right-click the zone that you want to set up.
3. Choose Properties.
4. In the Properties dialog box (see Figure 2.10), choose the Change button next to Replication.

FIGURE 2.10 DNS zone replication scope

5. Choose the replication scope that fits your organization.
New Functionality in Windows Server 2008 DNS

Microsoft Windows Server 2008 has improved their version of DNS in many different ways. This section covers this new functionality. Here are some of the new DNS features we will discuss:

- Background zone loading
- Support for TCP/IP version 6 (IPv6)
- Read-only domain controllers
- GlobalName zone

Background Zone Loading

If an organization had to restart a DNS server with an extremely large Active Directory Integrated DNS zones database in the past, DNS had a common problem with an Active Directory Integrated DNS zone. After the DNS restart, it could take hours for DNS data to be retrieved from Active Directory. During this time, the DNS server was unable to service any client requests.

Microsoft Windows Server 2008 DNS has addressed this problem by implementing background zone loading. As the DNS restarts, the Active Directory zone data populates the database in the background. This allows the DNS server to service client requests for data from other zones almost immediately after a restart.

Background zone loading accomplishes this task by loading the DNS zone using separate threads. This allows a DNS server to service requests while still loading the rest of the zone. If a client sends a request to the DNS server for a computer that has not loaded into memory yet, the DNS server retrieves the data from Active Directory and updates the record.

Support for IPv6 Addresses

Over the past few years, the Internet has starting running into a problem that was not foreseen when the it was first created—it started running out of TCP/IP addresses. As you probably already know, when the Internet was created, it was used for government and academic purposes only. Then, seemingly overnight, it grew to be the information super highway. Now, asking someone for their email address is almost as common as asking for their phone number.

In the past, the common version of TCP/IP was version 4 (IPv4). The release of TCP/IP version 6 (IPv6) has solved the lack of IP addresses problem. IPv4 addresses were 32 bits long, but IPv6 addresses are now 128 bits. The longer lengths allow for a much greater number of globally unique TCP/IP addresses.
Microsoft Windows Server 2008 DNS has built in support to accommodate both IPv4 and IPv6 address records (DNS records are explained later in this chapter). DHCP can also issue IPv6 addresses, which lets administrators allow DHCP to register the client with DNS, or the IPv6 client can register their address with the DNS server.

Support for Read-Only Domain Controllers

As mentioned in Chapter 1, “Overview of Active Directory,” Windows Server 2008 has introduced a new type of domain controller called the read-only domain controller (RODC). This is a full copy of the Active Directory database without the ability to configure Active Directory. The RODC gives an organization the ability to install a domain controller in a location (on or offsite) where security is a concern.

Microsoft Windows Server 2008 DNS has implemented a new type of zone to help support an RODC. A primary read-only zone allows a DNS server to receive a copy of the application partition (including ForestDNSZones and DomainDNSZones) that DNS uses. This allows DNS to support an RODC due to the fact that DNS now has a full copy of all DNS zones stored in Active Directory.

A primary read-only zone is just what it says—“a read-only zone”; so to make any changes to it, you have to change the primary zones located on the Active Directory Integrated DNS server.

GlobalName Zones

Earlier in this chapter we talked about organizations using the Windows Internet Name Service (WINS) to resolve NetBIOS names (also referred to as computer names) to TCP/IP addresses. Many organizations, even today, still use WINS along with DNS for name resolution. Unfortunately, WINS is slowly becoming obsolete.

To help organizations move forward with an all-DNS network, Microsoft Windows Server 2008 DNS supports GlobalName zones. These use single-label names (DNS names that do not contain a suffix such as .com, .net, etc.) the same way WINS does. Unlike WINS, GlobalName zones are not intended to support peer-to-peer networks and workstation name resolution, nor do they support dynamic DNS updates.

GlobalName zones were designed to be used with servers. Since GlobalName zones are not dynamic, an administrator has to manually enter the records into the zone database. In most organizations, the servers have static TCP/IP addresses and this works well with the GlobalName zone design. GlobalName zones are normally used to map single-label CNAME (Alias) resource records to an FQDN.

Introducing DNS Record Types

No matter where your zone information is stored, you can rest assured that it contains a variety of DNS information. Although the DNS snap-in makes it unlikely that you’ll ever need to edit these files by hand, it’s good to know exactly what data is contained there.
As stated previously, zone files consists of a number of resource records (RRs). You need to know about several types of resource records to effectively manage your DNS servers. They are discussed in the following sections.

Part of the resource record is its class. Classes define the type of network for the resource record. There are three classes: Internet, Chaosnet, and Hesoid. By far, the Internet class is the most popular. In fact, it’s doubtful that you’ll see either Chaosnet or Hesoid classes in the wild.

The following are some of the more important resource records in a DNS database. For a complete listing of records in a Microsoft DNS database, visit Microsoft’s website.

Start of Authority (SOA) Records

The first record in a database file is the start of authority (SOA) record. The SOA defines the general parameters for the DNS zone, including the identity of the authoritative server for the zone.

The SOA is in the following format:

```
@ IN SOA primary_master contact_e-mail serial_number
        refresh_time retry_time expiration_time time_to_live
```

Here is a sample SOA from the domain example.com:

```
@ IN SOA win2k3r2.example.com. hostmaster.example.com. (  
    5 ; serial number  
    900 ; refresh  
    600 ; retry  
    86400 ; expire  
    3600 ) ; default TTL
```

Table 2.2 lists the attributes stored in the SOA record.

<table>
<thead>
<tr>
<th>Field</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>Current zone</td>
<td>The current zone for the SOA. This can be represented by an @ symbol to indicate the current zone or by naming the zone itself. In the example, the current zone is example.com. The trailing dot (.com.) indicates the zone's place relative to the root of the DNS.</td>
</tr>
<tr>
<td>Class</td>
<td>This will almost always be the letters IN for the Internet class.</td>
</tr>
<tr>
<td>Type of record</td>
<td>The type of record follows—in this case it's SOA.</td>
</tr>
</tbody>
</table>
Chapter 2 • Domain Name System (DNS)

Name Server (NS) Records

Name server (NS) records list the name servers for a domain. This record allows other name servers to look up names in your domain. A zone file may contain more than one name server record. The format of these records is simple:

```
example.com. IN NS Hostname.example.com
```

Table 3.3 explains the attributes stored in the NS record.

TABLE 2.3 The NS Record Structure

<table>
<thead>
<tr>
<th>Field</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>name</td>
<td>The domain that will be serviced by this name server. In this case we used example.com.</td>
</tr>
</tbody>
</table>
Introducing DNS Record Types

Any domain name in the database file that is not terminated with a period will have the root domain appended to the end. For example, an entry that just has the name sales will be expanded by adding the root domain to the end, whereas the entry sales.example.com won’t be expanded.

Host Record

A host record (also called an A record for IPv4 and AAAA record for IPv6) is used to statically associate a host’s name to its IP addresses. The format is pretty simple:

`host_name optional_TTL IN A IP_Address`

Here’s an example from our DNS database:

```
   www IN A 192.168.0.204
   SMTP IN A 192.168.3.144
```

The A or AAAA record ties a hostname (which is part of an FQDN) to a specific IP address. This makes these records suitable for use when you have devices with statically assigned IP addresses; in this case, you create these records manually using the DNS snap-in. As it turns out, if you enable DDNS, your DHCP server can create these for you; that automatic creation is what enables DDNS to work.

Notice that an optional TTL field is available for each resource record in the DNS. This value is used to set a TTL that is different from the default TTL for the domain. For example, if you wanted a 60-second TTL for the www A or AAAA record, it would look like this:

```
   www 60 IN A 192.168.0.204
```

Alias Record

Closely related to the host record is the alias or canonical name (CNAME) record. The syntax of an alias record looks like the following:

```
   alias optional_TTL IN CNAME hostname
```
Chapter 2 • Domain Name System (DNS)

Aliases are used to point more than one DNS record toward a host for which an A record already exists. For example, if the hostname of your web server was actually chaos, you would likely have an A record like this:

```
chaos IN A 192.168.1.10
```

Then you could make an alias or CNAME for the record so that `www.example.com` would point to chaos:

```
www IN CNAME chaos.example.com.
```

Note the trailing dot (.) on the end of the CNAME record. This means the root domain is not appended to the entry.

Pointer (PTR) Record

A or AAAA records are probably the most visible component of the DNS database because Internet users depend on them to turn FQDNs like `www.microsoft.com` into the IP addresses that browsers and other components require to find Internet resources. However, the host record has a lesser-known but still important twin: the pointer (PTR) record. The format of a PTR record looks like the following:

```
reversed_address.in-addr.arpa. optional_TTL IN PTR targeted_domain_name
```

The A or AAAA record maps a hostname to an IP address, and the PTR record does just the opposite—mapping an IP address to a hostname—through the use of the `in-addr.arpa` zone.

The PTR record is necessary because IP addresses begin with the least-specific portion first (the network) and end with the most-specific portion (the host); whereas hostnames begin with the most specific portion at the beginning and then traverses the DNS tree to the least-specific part, the dot (.), at the root of the tree.

Reverse DNS records, therefore, need to be represented in this most-specific-to-least-specific manner. The PTR record for mapping 192.168.1.10 to `www.example.com` would look like this:

```
```

Now a DNS query for that record can follow the logical DNS hierarchy from the root of the DNS tree all the way to the most-specific portion.

Mail Exchanger (MX) Record

The mail exchanger (MX) record is used to specify which servers accept mail for this domain. Each MX record contains two parameters—a preference and a mail server—as shown in the following example:

```
domain IN MX preference mailserver_host
```
The MX record uses the preference value to specify which server should be used if more than one MX record is present. The preference value is a number. The lower the number, the more preferred the server. Here's an example:

```
example.com. IN MX 0 mail.example.com.
example.com. IN MX 10 backupmail.example.com.
```

In the example, mail.example.com is the default mail server for the domain. If that server goes down for any reason, the backupmail.example.com mail server is used by mailers.

Service (SRV) Record

Windows Server 2008 depends on some other services, like the Lightweight Directory Access Protocol (LDAP) and Kerberos. Using a service record, which is another type of DNS record, a Windows 2000, XP, or Vista client can query DNS servers for the location of a domain controller. This makes it much easier (for both the client and the administrator) to manage and distribute logon traffic in large-scale networks. For this approach to work, Microsoft has to have some way to register the presence of a service in DNS. Enter the *service (SRV)* record.

SRV records tie together the location of a service (like a domain controller) with information about how to contact the service. SRV records provide seven items of information. Let's look at an example to help clarify this powerful concept (Table 2.4 explains the fields in the following example):

```
ldap.tcp.example.com. 86400 IN SRV 10 100 389 hsv.example.com
ldap.tcp.example.com. 86400 IN SRV 20 100 389 msy.example.com
```

Table 2.4 The SRV Record Structure

<table>
<thead>
<tr>
<th>Field</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>Domain name</td>
<td>Domain for which this record is valid ldap.tcp.example.com.</td>
</tr>
<tr>
<td>TTL</td>
<td>Time to live (86,400 seconds).</td>
</tr>
<tr>
<td>Class</td>
<td>This field is always IN, which stands for Internet.</td>
</tr>
<tr>
<td>Record Type</td>
<td>Type of record (SRV).</td>
</tr>
<tr>
<td>Priority</td>
<td>Specifies a preference, similar to the preference field in an MX record. The SRV record with the lowest priority is used first (10).</td>
</tr>
<tr>
<td>Weight</td>
<td>Service records with equal priority are chosen according to their weight (100).</td>
</tr>
</tbody>
</table>
You can define other types of service records. If your applications support them, they can query DNS to find the services they need.

Configuring DNS

In the following section, we are going to start the explanation of the actual DNS server. We will start with an exercise to install DNS. Then we will talk about different zone configuration options and what they mean. We will follow this by completing a lab that covers configuring Dynamic DNS, delegating zones, and manually entering records.

Installing DNS

Let's start by installing DNS.

EXERCISE 2.1

Installing and Configuring the DNS Service

1. Open the Configure Your Server wizard by selecting Start ➤ Administrative Tools ➤ Server Manager.
2. Under Roles Summary, click the link to the right labeled Add Role.
3. Click the DNS Server Item in the Server Role list and click Next to continue.
4. Click Next on the Summary page to complete the DNS installation. You may need to insert the Windows Server 2008 CD into the CD-ROM drive, regardless next click Install.
5. If your computer is configured with a dynamic IP address, you are prompted to use a static address. At this point, the Local Area Connection Properties dialog box automatically appears. Once you have made the necessary changes, click OK.
Configuring DNS

Load Balancing with Round Robin

Like other DNS implementations, the Windows Server 2008 implementation of DNS supports load balancing through the use of round robin. Load balancing distributes the network load among multiple network hosts if they are available. You set up round robin load balancing by creating multiple resource records with the same hostname but different IP addresses for multiple computers. Depending on the options that you select, the DNS server responds with the addresses of one of the host computers.

If round robin is enabled, when a client requests name resolution, the first address entered in the database is returned to the resolver and is then sent to the end of the list. The next time a client attempts to resolve the name, the DNS server returns the second name in the database (which is now the first name) and then sends it to the end of the list, and so on. Round robin is enabled by default.

Configuring a Caching-Only Server

Although all DNS name servers cache queries that they have resolved, caching-only servers are DNS name servers that only perform queries, cache the answers, and return the results. They are not authoritative for any domains, and the information that they contain is limited to what has been cached while resolving queries. Accordingly, they don’t have any zone files, and they don’t participate in zone transfers. When a caching-only server is first started, it has no information in its cache; the cache is gradually built over time.
Caching-only servers are very easy to configure. After installing the DNS service, simply make sure that the root hints are configured properly.

1. Right-click your DNS server and choose the Properties command.
2. When the Properties dialog box appears, switch to the Root Hints tab (see Figure 2.11).

FIGURE 2.11 The Root Hints tab of the DNS server’s Properties dialog box

3. If your server is connected to the Internet, you should see a list of root hints for the root servers maintained by ICANN and the Internet Assigned Numbers Authority (IANA). If not, use the Add button to add root hints as defined in the `cache.dns` file. You can obtain current `cache.dns` files on the Internet by using a search engine. Just search for “cache.dns” and download one (I always try to get `cache.dns` files from a university or a company that manages domain names.

Setting Zone Properties

There are six tabs on the Properties dialog box for a forward or reverse lookup zone (see Figure 2.10 earlier in this chapter). You use the Security tab only to control who can change properties and make dynamic updates to records on that zone. The other tabs are discussed in the following sections.
Secondary zones don’t have a Security tab and their SOA tab shows you the contents of the master SOA record, which you can’t change.

General Tab
The General tab (see Figure 2.10) includes the following:

- The Status indicator and the associated Pause button lets you see and control whether this zone can be used to answer queries. When the zone is running, the server can use it to answer client queries; when it’s paused, the server won’t answer any queries it gets for that particular zone.
- The Type indicator and its Change button allow you to select the zone type. The options are standard primary, standard secondary, and AD-integrated. (See “Introduction to DNS Database Zones,” earlier in this chapter.) As you change the type, the controls you see below the horizontal dividing line change too. For primary zones, you’ll see a field that lets you select the zone filename; for secondary zones, you’ll get controls that allow you to specify the IP addresses of the primary servers; but the most interesting controls are the ones you see for AD-integrated zones. When you change to the AD-Integrated zone, you have the ability to make the dynamic zones secure only.
- The Replication indicator and its Change button allow you to change the replication scope if the zone is stored in Active Directory. You can choose to replicate the zone data to any of the following:
 - All DNS servers in the Active Directory forest
 - All DNS servers in a specified domain
 - All domain controllers in the Active Directory domain (required if you use Windows 2000 domain controllers in your domain)
 - All domain controllers specified in the replication scope of the application directory partition
- The Dynamic Updates field gives you a way to specify whether or not you want to support Dynamic DNS updates from compatible DHCP servers. As you learned earlier in the section “Dynamic DNS and Non-Dynamic DNS,” the DHCP server or DHCP client must know about and support Dynamic DNS in order to use it, but the DNS server has to participate too. You can turn dynamic updates on or off, or you can require that updates be secured.

Start Of Authority (SOA) Tab
The following options in the Start Of Authority (SOA) tab control the contents of the SOA record for this zone:
The Serial Number field indicates which version of the SOA record the server currently holds; every time you change another field, you should increment the serial number so that other servers will notice the change and get a copy of the updated record.

The Primary Server and Responsible Person fields indicate the location of the primary NS for this zone and the email address of the administrator responsible for the maintenance of this zone, respectively. The standard username for this is the “hostmaster.”

The Refresh Interval field controls how often any secondary zones of this zone must contact the primary zone server and get any changes that have been posted since the last update.

The Retry Interval field controls how long secondary servers will wait after a zone transfer fails before they try again. They’ll keep trying at the interval you specify (which should be shorter than the refresh interval) until they eventually succeed in transferring zone data.

The Expires After field tells the secondary servers when to throw away zone data. The default of 1 day (24 hours) means that a secondary server that hasn’t gotten an update in 24 hours will delete its local copy of the zone data.

The Minimum (Default) TTL field sets the default TTL for all RRs created in the zone; you can assign specific TTLs to individual records if you want.

The TTL For This Record field controls the TTL for the SOA record itself.
Name Servers Tab

The name server (NS) record for a zone indicates which name servers are authoritative for the zone. That normally means the zone primary server and any secondary servers you’ve configured for the zone (remember, secondary servers are authoritative read-only copies of the zone). You edit the NS record for a zone using the Name Servers tab (Figure 2.13). The tab shows you which servers are currently listed, and you use the Add, Edit, and Remove buttons to specify which name servers you want included in the zone’s NS record.

![The Name Servers tab of the zone Properties dialog box](image)

WINS Tab

The WINS tab allows you to control whether this zone uses WINS forward lookups or not. These lookups pass on queries that DNS can’t resolve to WINS for action. This is a useful setup if you’re still using WINS on your network. You must explicitly turn this option on with the Use WINS Forward Lookup checkbox in the WINS tab for a particular zone.

Zone Transfers Tab

Zone transfers are necessary and useful because they’re the mechanism used to propagate zone data between primary and secondary servers. For primary servers (whether AD-integrated or not), you can specify whether or not your servers will allow zone transfers (See Figure 2.9, earlier in this chapter) and, if so, to whom.

You can use the following controls on the Zone Transfers tab to configure these settings per zone:
The Allow Zone Transfers checkbox controls whether or not the server answers zone transfer requests for this zone at all—when it’s not checked, no zone data is transferred. The Allow Zone Transfers selections are as follows:

- To Any Server allows any server anywhere on the Internet to request a copy of your zone data.
- Only To Servers Listed On The Name Servers Tab (the default) limits transfers to servers you specify. This is a more secure setting than To Any Server because it limits transfers to other servers for the same zone.
- Only To The Following Servers controls allows you to specify exactly which servers are allowed to request zone transfers. This list can be larger or smaller than the list specified on the Name Servers tab.

The Notify button is for setting up automatic notification triggers that are sent to secondary servers for this zone. Those triggers signal the secondary servers that changes have occurred on the primary server so that the secondary servers can request updates sooner than their normally scheduled interval. The options in the Notify dialog box are similar to those in the Zone Transfers tab. You can enable automatic notification and then choose either Servers Listed On The Name Servers Tab or The Following Servers.

Configuring Zones for Dynamic Updates

In Exercise 2.2, you will modify the properties of a forward lookup zone, configuring the zone to use WINS to resolve names not found by querying the DNS namespace. In addition, you’ll configure the zone to allow dynamic updates.

Exercise 2.2

Configuring a Zone for Dynamic Update

1. Open the DNS management snap-in by selecting Start ➤ Administrative Tools ➤ DNS.
2. Click the DNS server to expand it and then expand the Forward Lookup Zones folder.
3. Right-click the zone you want to modify (which may be the one you created in the previous exercise) and choose the Properties command.
4. Switch to the WINS tab and click the Use WINS Forward Lookup checkbox.
5. Enter the IP address of a valid WINS server on your network, click Add, and then click OK.
6. Click the General tab.
7. Change the value of the Allow Dynamic Updates control to Yes. Click OK to close the Properties dialog box. Notice that there’s now a new WINS Lookup RR in your zone.
Delegating Zones for DNS

DNS provides the ability to divide the namespace into one or more zones, which can then be stored, distributed, and replicated to other DNS servers. When deciding whether to divide your DNS namespace to make additional zones, consider the following reasons to use additional zones:

- A need to delegate management of part of your DNS namespace to another location or department within your organization
- A need to divide one large zone into smaller zones for distributing traffic loads among multiple servers, for improving DNS name resolution performance, or for creating a more fault-tolerant DNS environment
- A need to extend the namespace by adding numerous subdomains at once, such as to accommodate the opening of a new branch or site

Each new delegated zone requires a primary DNS server just like a regular DNS zone. When delegating zones within your namespace, be aware that for each new zone you create, you need to place delegation records in other zones that point to the authoritative DNS servers for the new zone. This is necessary both to transfer authority and to provide correct referral to other DNS servers and clients of the new servers being made authoritative for the new zone.

In Exercise 2.3, you’ll create a delegated subdomain of the domain you created back in Exercise 2.1. Note that the name of the server to which you want to delegate the subdomain must be stored in an A or CNAME record in the parent domain.

EXERCISE 2.3

Creating a Delegated DNS Zone

1. Open the DNS management snap-in by selecting Start ➔ Administrative Tools ➔ DNS.
2. Expand the DNS server and locate the zone you created in Exercise 2.1.
3. Right-click the zone and choose the New Delegation command.
4. The New Delegation wizard appears. Click Next to dismiss the initial wizard page.
Chapter 2 • Domain Name System (DNS)

EXERCISE 2.3 (continued)

5. Enter ns1 (or whatever other name you like) in the Delegated Domain field of the Delegated Domain Name page. This is the name of the domain for which you want to delegate authority to another DNS server. It should be a subdomain of the primary domain (for example, to delegate authority for huntsville.example.net, you’d enter huntsville in the Delegated Domain field). Click Next to complete this step.

6. When the Name Servers page appears, use the Add button to add the name and IP address(es) of the servers that will be hosting the newly delegated zone. For the purpose of this exercise, enter the zone name you used in Exercise 2.1. Click the Resolve button to automatically resolve this domain name’s IP address into the IP address field. Click OK when you are done. Click Next to continue with the wizard.

7. Click the Finish button. The New Delegation wizard disappears and you’ll notice the new zone you just created appear beneath the zone you selected in step 3. The newly delegated zone’s folder icon is drawn in gray to indicate that control of the zone is delegated.

Manually Creating DNS Records

From time to time you may find it necessary to manually add resource records to your Windows Server 2008 DNS servers. Although Dynamic DNS frees you from the need to fiddle with
A and PTR records for clients and other such entries, you still have to create other resource types (including MX records, required for the proper flow of SMTP email) manually. You can manually create A, PTR, MX, SRV, and many other record types.

There are only two important things to remember:

- You must right-click the zone and use either the New Record command or the Other New Records command.
- You must know how to fill in the fields of whatever record type you’re using.

For example, to create an MX record, you need three pieces of information (the domain, the mail server, and the priority), but to create an SRV record, you need several more.

In Exercise 2.4, you will manually create an MX record for a mailtest server in the domain you created back in Exercise 2.1.

Exercise 2.4

Manually Creating DNS RRs

1. Open the DNS management snap-in by selecting Start ➔ Administrative Tools ➔ DNS.
2. Expand your DNS server, right-click its zone, and use the New Mail Exchanger (MX) command.
3. Enter mailtest in the Host Or Child Domain field, and enter mailtest.yourDomain.com (or whatever domain name you used in Exercise 2.1) in the Fully Qualified Domain Name (FQDN) Of Mail Server field and then click OK. Notice that the new record is already visible.
Next, create an alias (or CNAME) record to point to the mail server. (It is assumed that you already have an A record for mailtest in your zone.) Right-click the target zone and choose Other New Records. When the Resource Record Type dialog box appears, find Alias (CNAME) in the list and select it.

Click the Create Record button. The New Resource Record dialog box appears.

Type mail into the Alias Name field.
Monitoring and Troubleshooting DNS

Now that you have set up and configured your DNS name server and created some resource records, you will want to confirm that it is resolving and replying to client DNS requests. A couple of tools allow you to do some basic monitoring and managing. Once you are able to monitor DNS, you’ll want to start troubleshooting.

The simplest test is to use the ping command to make sure the server is alive. A more thorough test would be to use nslookup to verify that you can actually resolve addresses for items on your DNS server.

In the following sections, we’ll look at some of these monitoring and management tools, as well as how to troubleshoot DNS.

Monitoring DNS with the DNS Snap-In

You can use the DNS snap-in to do some basic server testing and monitoring. More importantly, you use the snap-in to monitor and set logging options. On the Event Logging tab of the server’s Properties dialog box (Figure 2.14), you can pick which events you want logged. The more events you select, the more log information you’ll get. This is useful when you’re trying to track what’s happening with your servers, but it can result in a very, very large log file if you’re not careful.

Exercise 2.4 (continued)

7. Type mailtest.yourDomain.com into the Fully Qualified Domain Name (FQDN) For Target Host field.

8. Click the OK button, then click Done.

Monitoring and Troubleshooting DNS

Now that you have set up and configured your DNS name server and created some resource records, you will want to confirm that it is resolving and replying to client DNS requests. A couple of tools allow you to do some basic monitoring and managing. Once you are able to monitor DNS, you’ll want to start troubleshooting.

The simplest test is to use the ping command to make sure the server is alive. A more thorough test would be to use nslookup to verify that you can actually resolve addresses for items on your DNS server.

In the following sections, we’ll look at some of these monitoring and management tools, as well as how to troubleshoot DNS.

Monitoring DNS with the DNS Snap-In

You can use the DNS snap-in to do some basic server testing and monitoring. More importantly, you use the snap-in to monitor and set logging options. On the Event Logging tab of the server’s Properties dialog box (Figure 2.14), you can pick which events you want logged. The more events you select, the more log information you’ll get. This is useful when you’re trying to track what’s happening with your servers, but it can result in a very, very large log file if you’re not careful.

Figure 2.14 The Event Logging tab of the server’s Properties dialog box
The Monitoring tab (Figure 2.15) gives you some testing tools. When the checkbox labeled A Simple Query Against This DNS Server is checked a test is performed that asks for a single record from the local DNS server; it’s useful for verifying that the service is running and listening to queries, but not much else. When the checkbox labeled A Recursive Query To Other DNS Servers is checked, the test is more sophisticated—a recursive query checks whether forwarding is working okay. The Test Now button and the Perform Automatic Testing At The Following Interval checkbox allow you to run these tests now or later, as you require.

![FIGURE 2.15 The Monitoring tab of the server’s Properties dialog box](image)

If the simple query fails, check that the local server contains the zone 1.0.0.127.in-addr.arpa. If the recursive query fails, check that your root hints are correct and that your root servers are running.

In Exercise 2.5, you will enable logging, use the DNS MMC to test the DNS server, and view the contents of the DNS log.

EXERCISE 2.5

Simple DNS Testing

1. Open the DNS management snap-in by selecting Start ➤ Administrative Tools ➤ DNS.
2. Right-click the DNS server you want to test and select Properties.
EXERCISE 2.5 (continued)

3. Switch to the Debug Logging tab, check all the debug logging options except Filter Packets By IP Address, and enter a full path and filename in the File Path And Name field.

Click the Apply button.

4. Switch to the Monitoring tab, and check both A Simple Query Against This DNS Server and A Recursive Query To Other DNS Servers.

5. Click the Test Now button several times and then click OK.

6. Using Windows Explorer, navigate to the folder that you specified in step 3 and use WordPad to view the contents of the log file.

Troubleshooting DNS

When troubleshooting DNS problems, ask yourself the following basic questions:

- What application is failing? What works? What doesn’t work?
- Is the problem basic IP connectivity, or is it name resolution? If the problem is name resolution, does the failing application use NetBIOS names, DNS names, or hostnames?
- How are the things that do and don’t work related?
- Have the things that don’t work ever worked on this computer or network? If so, what has changed since they last worked?
Chapter 2 • Domain Name System (DNS)

Windows Server 2008 provides several useful tools, discussed in the following sections, that can help you answer these questions:

- Nslookup is used to perform DNS queries and to examine the contents of zone files on local and remote servers.
- DNSLint is a command line utility used for troubleshooting many common DNS issues.
- Ipconfig allows you to perform the following tasks:
 - View DNS client settings.
 - Display and flush the resolver cache.
 - Force a dynamic update client to register its DNS records.
- The DNS log file monitors certain DNS server events and logs them for your edification.

Using Nslookup

Nslookup is a standard command-line tool provided in most DNS server implementations, including Windows Server 2008. Windows Server 2008 gives you the ability to launch nslookup from the DNS snap-in.

When launching nslookup from the DNS snap-in, a command prompt window opens automatically. You enter nslookup commands in this window.

Nslookup offers the ability to perform query testing of DNS servers and to obtain detailed responses at the command prompt. This information can be useful for diagnosing and solving name resolution problems, for verifying that resource records are added or updated correctly in a zone, and for debugging other server-related problems. You can do a number of useful things with nslookup:

- Use it in non-interactive mode to look up a single piece of data.
- Enter interactive mode and use the debug feature.
- Perform the following from within interactive mode:
 - Set options for your query.
 - Look up a name.
 - Look up records in a zone.
 - Perform zone transfers.
 - Exit nslookup.

When you are entering queries, it is generally a good idea to enter FQDNs so you can control what name is submitted to the server. However, if you want to know which suffixes are added to unqualified names before they are submitted to the server, you can enter nslookup in debug mode and then enter an unqualified name.
Using Nslookup on the Command Line

To use nslookup in plain old command-line mode, enter the following in the command prompt window:

```
nslookup DNS_name_or_IP_address server_IP_address
```

This command will look up a DNS name or address using a server at the IP address you specify.

Using Nslookup in Interactive Mode

Nslookup is a lot more useful in interactive mode because you can enter several commands in sequence. Entering `nslookup` by itself (without specifying a query or server) puts it in interactive mode, where it will stay until you type `exit` and press Enter. Before that point, you can look up lots of useful stuff. Following are some of the tasks you can perform with nslookup in interactive mode:

Setting options with the `set` command While in interactive mode, you can use the `set` command to configure how the resolver will carry out queries. Table 2.5 shows a few of the options available with `set`.

<table>
<thead>
<tr>
<th>Option</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>set all</code></td>
<td>Shows all the options available.</td>
</tr>
<tr>
<td><code>set d2</code></td>
<td>Puts nslookup in debug mode so you can examine the query and response packets between the resolver and the server.</td>
</tr>
<tr>
<td><code>set domain=domain name</code></td>
<td>Tells the resolver what domain name to append for unqualified queries.</td>
</tr>
<tr>
<td><code>set timeout=timeout</code></td>
<td>Tells the resolver how long to keep trying to contact the server. This option is useful for slow links where queries frequently time out and the wait time must be lengthened.</td>
</tr>
<tr>
<td><code>set type=record type</code></td>
<td>Tells the resolver which type of resource records to search for (for example, A, PTR, or SRV). If you want the resolver to query for all types of resource records, type <code>set type=all</code>.</td>
</tr>
</tbody>
</table>

Looking up a name While in interactive mode, you can look up a name just by typing it: `stellacon.com`. In this example, `stellacon` is the owner name for the record you are looking for, and `.com` is the server that you want to query.

You can use the wildcard character (*) in your query. For example, if you want to look for all resource records that have `k` as the first letter, just type `k*` as your query.
Looking up a record type If you want to query for a particular type of record (for instance, an MX record), use the set type command. The command set type=mx tells nslookup that you’re only interested in seeing MX records that meet your search criteria.

Listing the contents of a domain To get a list of the contents of an entire domain, use the ls command. To find all the hosts in the apple.com domain, you’d type set type=a and then type ls -t apple.com.

Troubleshooting zone transfers You can simulate zone transfers by using the ls command with the -d switch. This can help you determine whether or not the server you are querying allows zone transfers to your computer. To do this, type the following: ls -d domain_name.

Nslookup Responses and Error Messages
A successful nslookup response looks like this:

Server: Name_of_DNS_server
Address: IP_address_of_DNS_server
Response_data

Nslookup might also return an error message. Some of the common messages are listed in Table 2.6:

<table>
<thead>
<tr>
<th>Error message</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>DNS request timed out. Timeout was x seconds.</td>
<td>The resolver did not locate a PTR resource record (containing the hostname) for the server IP address you specified. Nslookup can still query the DNS server, and the DNS server can still answer queries.</td>
</tr>
<tr>
<td>*** Can’t find server name for address IP_Address: Timed out Default servers are not available Default Server: Unknown Address: IP_address_of_DNS_server</td>
<td>A request was not fulfilled in the allotted time. This might happen, for example, if the DNS service was not running on the DNS server that is authoritative for the name.</td>
</tr>
<tr>
<td>*** Request to Server timed-out</td>
<td></td>
</tr>
<tr>
<td>*** Server can’t find Name_or_IP_address_queried_for: No response from server</td>
<td>The server is not receiving requests on UDP (User Datagram Protocol) port 53.</td>
</tr>
</tbody>
</table>
In Exercise 2.6, you’ll get some hands-on practice with the nslookup tool.

EXERCISE 2.6

Using the nslookup Command

1. Open a Windows Server 2008 command prompt by selecting Start Command Prompt.

2. Type nslookup and press the Enter key. (For the rest of the exercise, use the Enter key to terminate each command.)

TABLE 2.6 Common Nslookup Error Messages

<table>
<thead>
<tr>
<th>Error message</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>*** Server can’t find Name_or_IP_address_queried_for: Non-existent domain</td>
<td>The DNS server was unable to find the name or IP address in the authoritative domain. The authoritative domain might be on the remote DNS server or on another DNS server that this DNS server is unable to reach.</td>
</tr>
<tr>
<td>*** Server can’t find Name_or_IP_address_queried_for: Server failed</td>
<td>The DNS server is running but is not working properly. For example, it might include a corrupted packet, or the zone in which you are querying for a record might be paused. However, this message can also be returned if the client queries for a host in a domain for which the DNS server is not authoritative. You will also receive the error if the DNS server cannot contact its root servers, it is not connected to the Internet, or it has no root hints.</td>
</tr>
</tbody>
</table>

Chapter 2 • Domain Name System (DNS)

Using DNSLint

Microsoft Windows Server 2008 DNS can use the DNSLint command line utility to help diagnose some common DNS name resolution issues and to help diagnose potential problems of incorrect delegation. You need to download DNSLint from the Microsoft Download Center.

DNSLint uses three main functions to verify DNS records and to generate a report in HTML:

- `dnslint /d` helps diagnose reasons that cause “lame delegation” and other related DNS problems.
- `dnslint /ql` helps verify a user-defined set of DNS records on multiple DNS servers.
- `dnslint /ad` helps verify DNS records pertaining to Active Directory replication.

Here is the syntax for DNSLint:

```
dnslint /d domain_name | /ad [LDAP_IP_address] | /ql input_file
[/c [smtp,pop,imap]] [/no_open] [/r report_name]
[/t] [/test_tcp] [/s DNS_IP_address] [/v] [/y]
```

The following are some sample queries:

```
dnslint /d stellacon.com
dnslint /ad /s 192.168.36.201
dnslint /ql dns_server.txt
dnslint /ql autocreate
dnslint /v /d stellacon.com
dnslint /r newfile /d stellacon.com
dnslint /y /d stellacon.com
dnslint /no_open /d stellacon.com
```

EXERCISE 2.6 (continued)

3. Try looking up a well-known address: Type `www.microsoft.com`. Notice that the query returns several IP addresses (Microsoft load-balances Web traffic by using multiple servers in the same DNS record).

4. Try looking up a nonexistent host: type `www.example.ccccc`. Notice that your server complains that it can’t find the address. This is normal behavior.

5. Type `Exit` at the prompt. Type `Exit` again to leave Command Prompt.
Table 2.7 explains the command options.

TABLE 2.7 DNSLint Command Options

<table>
<thead>
<tr>
<th>Command option</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>/d</td>
<td>Domain name that is being tested.</td>
</tr>
<tr>
<td>/ad</td>
<td>Resolves DNS records that are used for Active Directory forest replication.</td>
</tr>
<tr>
<td>/s</td>
<td>TCP/IP address of host</td>
</tr>
<tr>
<td>/ql</td>
<td>Request DNS query tests from a list. This switch sends DNS queries specified in an input file.</td>
</tr>
<tr>
<td>/v</td>
<td>Turns verbose mode on.</td>
</tr>
<tr>
<td>/r filename</td>
<td>Allows you to create a report file.</td>
</tr>
<tr>
<td>/y</td>
<td>Overwrites an existing report file without being prompted.</td>
</tr>
<tr>
<td>/no_open</td>
<td>Prevents a report from opening automatically.</td>
</tr>
</tbody>
</table>

Using Ipconfig

You can use the command-line tool ipconfig to view your DNS client settings, to view and reset cached information used locally for resolving DNS name queries, and to register the resource records for a dynamic update client. If you use the `ipconfig` command with no parameters, it displays DNS information for each adapter, including the domain name and DNS servers used for that adapter. Table 2.8 shows some command-line options available with `ipconfig`.

TABLE 2.8 Command-Line Options Available for the ipconfig Command

<table>
<thead>
<tr>
<th>Command</th>
<th>What It Does</th>
</tr>
</thead>
<tbody>
<tr>
<td>ipconfig /all</td>
<td>Displays additional information about DNS, including the FQDN and the DNS suffix search list.</td>
</tr>
<tr>
<td>ipconfig /flushdns</td>
<td>Flushes and resets the DNS resolver cache. For more information about this option, see the section “Configuring DNS” earlier in this chapter.</td>
</tr>
</tbody>
</table>
You should know and be comfortable with the `ipconfig` commands related to DNS for the exam.

Using the DNS Log File

You can configure the DNS server to create a log file that records the following information:

- Queries
- Notification messages from other servers
- Dynamic updates
- Content of the question section for DNS query messages
- Content of the answer section for DNS query messages
- Number of queries this server sends
- Number of queries this server has received
- Number of DNS requests received over a UDP port
- Number of DNS requests received over a TCP port
- Number of full packets sent by the server
- Number of packets written through by the server and back to the zone

The DNS log appears in `systemroot\System32\dns\Dns.log`. Because the log is in RTF format, you must use WordPad or Word to view it.

Once the log file reaches the maximum size, Windows Server 2008 writes over the beginning of the file. You can change the maximum size of the log. If you make the size value higher, data persists for a longer time but the log file consumes more disk space. If you make the value smaller, the log file uses less disk space but the data persists for a shorter time.

TABLE 2.8 Command-Line Options Available for the `ipconfig` Command *(continued)*

<table>
<thead>
<tr>
<th>Command</th>
<th>What It Does</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>ipconfig /displaydns</code></td>
<td>Displays the contents of the DNS resolver cache. For more information about this option, see “Configuring DNS” earlier in this chapter.</td>
</tr>
<tr>
<td><code>ipconfig /registerdns</code></td>
<td>Refreshes all DHCP leases and registers any related DNS names. This option is available only on Windows 2000 and newer computers that run the DHCP Client service.</td>
</tr>
</tbody>
</table>
Do not leave DNS logging turned on during normal operation because it sucks up both processing and hard disk resources. Enable it only when diagnosing and solving DNS problems.

Summary

DNS was designed to be a robust, scalable, high-performance system for resolving friendly names to TCP/IP host addresses. We started by presenting an overview of the basics of DNS and how DNS names are generated. We then looked at the many new features available in the Microsoft Windows Server 2008 version of DNS and focused on how to install, configure, and manage the necessary services. Microsoft’s DNS is based on a widely accepted set of industry standards. Because of this, Microsoft’s DNS can work with both Windows and non-Windows based networks.

Exam Essentials

Understand the purpose of DNS. DNS is a standard set of protocols that defines a mechanism for querying and updating address information in the database, a mechanism for replicating the information in the database among servers, and a schema of the database.

Understand the different parts of the DNS database. The SOA record defines the general parameters for the DNS zone, including who the authoritative server is. NS records list the name servers for a domain; they allow other name servers to look up names in your domain. A host record (also called an address record or an A record) statically associates a host’s name with its IP addresses. Pointer records (PTRs) map an IP address to a hostname, making it possible to do reverse lookups. Alias records allow you to use more than one name to point to a single host. The MX record tells you which servers can accept mail bound for a domain. SRV records tie together the location of a service (like a domain controller) with information about how to contact the service.

Know how DNS resolves names. With iterative queries, a client asks the DNS server for an answer, and the client, or resolver, returns the best kind of answer it has. In a recursive query, the client sends a query to one name server, asking it to respond either with the requested answer or with an error. The error states either that the server can’t come up with the right answer or that the domain name doesn’t exist. With inverse queries, instead of supplying a name and then asking for an IP address, the client first provides the IP address and then asks for the name.
Understand the differences among DNS servers, clients, and resolvers. Any computer providing domain name services is a DNS server. A DNS client is any machine issuing queries to a DNS server. A resolver handles the process of mapping a symbolic name to an actual network address.

Know how to install and configure DNS. DNS can be installed before, during, or after installing the Active Directory service. When you install the DNS server, the DNS snap-in is installed, too. Configuring a DNS server ranges from very easy to very difficult, depending on what you’re trying to make it do. In the simplest configuration, for a caching-only server, you don’t have to do anything except make sure the server’s root hints are set correctly. You can also configure a root server, a normal forward lookup server, and a reverse lookup server.

Know how to create new forward and reverse lookup zones. You can use the New Zone wizard to create a new forward or reverse lookup zone. The process is basically the same for both types, but the specific steps and wizard pages differ somewhat. The wizard walks you through the steps, such as specifying a name for the zone (in the case of forward lookup zones) or the network ID portion of the network that the zone covers (in the case of reverse lookup zones).

Know how to configure zones for dynamic updates. The DNS service allows dynamic updates to be enabled or disabled on a per-zone basis at each server. This is easily done in the DNS snap-in.

Know how to delegate zones for DNS. DNS provides the ability to divide the namespace into one or more zones; these can then be stored, distributed, and replicated to other DNS servers. When delegating zones within your namespace, be aware that for each new zone you create, you need delegation records in other zones that point to the authoritative DNS servers for the new zone.

Understand the tools that are available for monitoring and troubleshooting DNS. You can use the DNS snap-in to do some basic server testing and monitoring. More importantly, you use the snap-in to monitor and set logging options. Windows Server 2008 automatically logs DNS events in the event log under a distinct DNS server heading. Nslookup offers the ability to perform query testing of DNS servers and to obtain detailed responses at the command prompt. You can use the command-line tool ipconfig to view your DNS client settings, to view and reset cached information used locally for resolving DNS name queries, and to register the resource records for a dynamic update client. Finally, you can configure the DNS server to create a log file that records queries, notification messages, dynamic updates, and various other DNS information.
Review Questions

1. You are the network administrator for a large sales organization with four distinct regional offices situated in different areas of the United States. Your Windows Server 2008 computers are all in place, and you have almost finished migrating all the workstations to XP Professional and Vista. Your next step is to implement a single Active Directory tree, but you want to put your DNS infrastructure in place before you start building your tree. Because DNS is a critical component for the proper functioning of Active Directory, you want to make sure that each region will have service for local resources as well as good performance. What should you do to realize these requirements?

A. Install a single DNS server at your location and create a separate domain name for each region for resolution of local resources.
B. Install a DNS server at each regional location and create a single domain name for all the regions for resolution of local resources.
C. Install a single DNS server at your location and create a single domain name for all the regions for resolution of local resources.
D. Install a DNS server at each regional location and create a separate domain name for each region for resolution of local resources.

2. The following diagram outlines DNS name resolution through recursion. Move each item into the correct position so that the flow of DNS traffic is correct.

Choices:
A = Client uses IP address to connect to www.company.com.
B = Root-level server resolves name.
C = Server returns IP address and caches name.
D = Client requests IP address.
E = Server cannot resolve name. Forwards request.
3. After upgrading your Windows NT network to Windows Server 2008, you decide to install Active Directory. Your network consists of 3 Windows Server 2008 computers, 65 XP Professional workstations, and 3 Unix workstations. One of the Unix stations is running a large laser printer and another is running a fax server. You’ve been using a DNS server on one of the Unix boxes for Internet browsing only, but now you’ll need DNS for Active Directory. You deploy the Windows Server 2008 DNS service, replacing the DNS on the Unix box and configuring it for dynamic updates. After you deploy Active Directory, everything appears to work fine—the users can connect to resources on the network through hostnames. However, it becomes apparent that the fax server and the laser printer are no longer accessible via their hostnames. What is the most likely cause of this problem?
 A. You need to disable dynamic updates on the DNS server.
 B. You need to install WINS to resolve the hostnames on the Unix machines.
 C. You need to manually add A resource records for the Unix machines.
 D. You need to integrate the primary DNS zone into Active Directory.

4. You have been brought into an organization that has a variety of computer systems. Management is trying to tie these systems together and to minimize the administrative efforts required to keep the network-provided services running. The systems consist of 4 Windows NT servers, 7 Windows Server 2008 computers, 300 Vista and XP Professional workstations, 100 Windows NT workstations, 30 Unix clients, and 3 Unix servers. Management wants to continue the migration toward the new versions of Windows and also to expand the number of Unix servers as the need arises. Presently, they are using WINS on the Windows NT servers and a DNS service on one of the Unix servers that points to an ISP and provides all hostname resolution. What would be your recommendation for providing name resolution service for this organization?
 B. Install the WINS service on the Unix server.
 C. Upgrade the DNS on the Unix server to the Windows Server 2008 DNS.
 D. Use the standard DNS service that is already on the Unix server.

5. Jerry wants to configure a Windows Server 2008 DNS server so that it can answer queries for hosts on his intranet but not on the Internet. He can accomplish this by doing which of the following? (Choose two.)
 A. Installing the DNS server inside his company’s firewall
 B. Configuring his server as a root server and leaving out root hints for the top-level domains
 C. Leaving forwarding turned off
 D. Disabling recursive lookups
6. Your company has been extraordinarily successful with its e-commerce site. In fact, because your customers have come to expect such a high level of reliability, you want to build several servers that mirror each other; just in case one of them fails, you will still be able to provide excellent service for your customers. The name of the web server is www.example.com, which you are duplicating on machines on different subnets, and you have made all the necessary host records in the DNS. After a while, you notice that only one machine is responding to client requests. You are not the original administrator for the company, so you suspect some of the default settings were changed before you arrived. What must you do so that your customers can utilize all the mirrored web servers?
 A. Enable DNS sharing.
 B. Enable IIS sharing.
 C. Enable round robin.
 D. Enable request redirector.
 E. Configure the proper priorities metric for this hostname.

7. You are the network administrator for a Windows Server 2008 network. You have multiple remote locations connected to your main office by slow satellite links. You want to install DNS into these offices so that clients can locate authoritative DNS servers in the main location. What type of DNS servers should be installed in the remote locations?
 A. Primary DNS zones
 B. Secondary DNS zones
 C. Active Directory Integrated zones
 D. Stub zones

8. The organization you work for has five Windows Server 2008 servers all running as domain controllers. Your DNS servers are all currently running as primary DNS zones. You need to set up a DNS strategy that allows all DNS servers to hold the same database and your company requires that you use secure DNS dynamic updates for all clients. What type of DNS strategy do you need to implement?
 A. Upgrade 1 server as a primary master and the rest as stub zones.
 B. Upgrade 1 server as a primary master and the rest as secondary servers.
 C. Upgrade all servers to Active Directory Integrated servers.
 D. Keep all servers primary servers and set up replication.
9. The company you work for has six locations around the country. You are part of the administrative team based in the central office, and you have finished upgrading the workstations and servers to Vista and Server 2008. Your team is now in the process of deploying DNS in order to support your manager’s planned implementation of a single Active Directory tree so that you can support the network from your central location. Because you must support name resolution for six offices, you want to provide an efficient and responsive service for the users. Which of the following is the best approach to support your plans for a single Active Directory tree and provide efficiency and responsiveness for the users in this situation?

A. Create a single second-level name and maintain all the DNS servers at your central office to ease administration.

B. Create a single second-level name and deploy a DNS server at each location in the network.

C. Create a second-level name for each city and maintain all the DNS servers at your central office to ease administration.

D. Create a second-level name for each city and deploy a DNS server at each location in the network.

10. You want to quickly verify that your DNS service is running and listening to queries. What would you click or look at in the dialog box in order to do this?

A. The Name Servers area of the Root Hints tab

B. The Add button

C. The Monitoring tab

D. The Interfaces tab
11. Acme Bowling Pin Company, with offices in 4 states, has been acquired by Roadrunner Enterprises, which has offices in 14 states and is a highly diversified organization. Although the various companies are managed independently, the parent company is very interested in minimizing costs by taking advantage of any shared corporate resources; it also wants to have overall central control. This means that you, the network administrator for Acme Bowling Pin Company, will manage your own DNS namespace but will still be under the umbrella of the parent organization. Which of the following will best accomplish these goals?

A. Have each location, including yours, register its own namespace and manage its DNS system independently.

B. Register a single domain name for Roadrunner Enterprises and use delegated subdomains on a single DNS server at corporate headquarters to provide name resolution across the enterprise.

C. Register a single domain name for Roadrunner Enterprises and use delegated subdomains on DNS servers installed at each location to provide name resolution across the enterprise.

D. Have each location, including yours, register its own namespace and add it on a single DNS server at corporate headquarters to provide name resolution across the enterprise.

12. A DNS client sends a recursive query to its local DNS server, asking for the IP address of www.bigbrother.gov. The DNS server finds no local zones corresponding to the requested domain name, so it sends a request to a root name server. What does the root name server reply with?

A. The IP address of the name server for the bigbrother.gov domain

B. The DNS name of the .gov top-level domain

C. The IP address of www.bigbrother.gov

D. The IP address of the name server for the .gov top-level domain

13. You have a private network that contains several DNS zones and servers, including a couple of root name servers. You never need to change any of your DNS data. You find that the load on one of your name servers is inordinately high. What can you do to reduce this load?

A. Increase the TTL on the affected name server.

B. Decrease the TTL on the affected name server.

C. Add a service record to the affected name server.

D. Edit the directory command in the DNS boot file.
14. You are charged with upgrading your Windows NT network to Windows Server 2008. You plan on installing Active Directory and upgrading all your client machines to Vista. Your company does not allow Internet access because the company president still views it, as well as email, as a time-wasting toy that distracts the employees. Despite what you feel is a shortsighted view by management, you begin to design the upgrade process. You realize that DNS is an important component of Windows Server 2008, even though you won’t be using it to locate resources on the Internet. What DNS records must you include in the configuration of the Windows Server 2008 DNS service in this environment? (Choose all that apply.)

A. Host record
B. Pointer record
C. Alias record
D. Name server records
E. Start of authority record
F. Mail exchanger record
G. Service record

15. A spammer is attempting to send junk mail through an unsuspecting mail server. The spammer uses a fake DNS name from which they think the mail server will accept mail, but the mail is rejected anyway. How does the mail server know to reject the spammer’s mail?

A. The spammer’s DNS name is not in the cache file of the primary DNS server that serves the mail server’s domain, so it gets rejected.
B. A fake DNS name is automatically detected if the IP address isn’t recognized by the mail server.
C. The mail server employs a reverse lookup zone to verify that DNS names are not fake.
D. The spammer does not have an MX record in the database of the DNS server that serves the mail server’s domain.

16. Your web server’s hostname within the LAN is chaos.stellacon.com. However, you need to add a DNS entry so that it can be found with the name www.stellacon.com. What type of record should you add to the DNS zone for Stellacon.com in order for this to be configured properly?

A. An Alias/CNAME record
B. An A record
C. An SRV record
D. A PTR record
17. You have two master servers operating in your environment, a primary master and a secondary master. These DNS servers are authoritative for the zone example.com. When the secondary master transfers the domain, what part of the DNS zone does it use to determine if the zone data has changed?
 A. The TTL, or time to live
 B. The NS record
 C. The serial number
 D. The database record tombstone

18. This type of DNS query results in the server sending back its best answer from the cache or local data.
 A. Recursive
 B. Iterative
 C. Forward
 D. NS

19. You're troubleshooting an error whereby a client computer seems to have old DNS data. You've used ipconfig to see what DNS servers the client is using and you've used ping to verify connectivity to those servers. What command should you use in order to clear the DNS cache on the client so that it will start building a new cache of DNS lookups?
 A. ipconfig /cleardns
 B. nslookup /flushdns
 C. dns /register
 D. ipconfig /flushdns

20. Your organization has two DNS servers located at the home office location. However, clients in remote offices are reporting sporadic DNS lookup failures. The network team has informed you that some of the WAN links to the remote offices are nearing saturation. To relieve some of the burden, you decide to implement secondary DNS servers in the remote offices. However, the DNS servers will not be official name servers for the domain, and therefore you don't need to set up NS records for each server. You configure half of the new DNS servers to attempt zone transfer from the primary master and the other half from the secondary master server. After deploying the servers, you notice that none of the servers are able to complete a zone transfer. What is likely the cause of this?
 A. The primary master server's firewall is not configured for zone transfer data.
 B. The primary and secondary master servers are not configured to allow zone transfers from the new DNS servers.
 C. The new DNS servers cannot perform zone transfers from secondary servers.
 D. The primary server is configured to allow recursive queries only.
Answers to Review Questions

1. B. A DNS server installed at each regional location will provide name and service resolution even if the WAN links go down. The local location will also have better performance because the requests will not have to travel through the WAN links. A single domain name for all the locations is needed because your requirement is to have one Active Directory tree with a contiguous name space.

2. The client machine places its request with its preferred DNS server. If the DNS server doesn’t have an entry in its DNS database, it forwards the request to a root-level server. The root-level server resolves the name and sends it back to the preferred DNS server. The DNS server caches the name so that any future requests don’t need to be forwarded, and then it sends the IP address to the client. The client then uses the IP address to reach the intended target.

3. C. Windows 2000 and newer computers will register themselves in the DNS through dynamic updates. However, the Unix machines will not register themselves in the DNS. These machines will have to be added manually into the DNS so that the other clients can locate them. If you disabled the Dynamic DNS updates, you would then have to add all the workstations on the network to the DNS manually.
4. A. Installing the Windows DNS service on the Windows Server 2008 computer will provide
dynamic updates. This will allow the newer Windows machines to publish themselves and to
locate the Active Directory services through the SRV records that this version of DNS supports.
The Windows Server 2008 DNS will also provide standard DNS services to the Unix and Win-
dows NT machines. In addition, it can point to the DNS server that your ISP is supplying for
searches beyond the local network.

No WINS service is available for Unix. It may remain on the Windows NT server until the
upgrade is complete and the NetBIOS name resolution is no longer necessary.

5. B, C. Configuring his server as a root server and leaving forwarding off means that the server
will either answer a query (for addresses it knows) or return a failure (for addresses it doesn’t
know).

6. C. The round robin option allows you to list a hostname with multiple IP addresses and then,
as each request comes into the DNS server, rotate that list, presenting each of the IP addresses
in turn. This will balance out the load across all the servers you have mirrored and configured
in the DNS.

7. D. Stub zones are very useful for slow WAN connections. These zones store only three types
of resource records: NS records, glue host (A) records, and SOA records. These three records
are used to locate authoritative DNS servers.

8. C. Upgrading all the DNS servers to Active Directory Integrated zones will allow all DNS serv-
ers to share the same Active Directory DNS database. Active Directory Integrated zones also
allow secure dynamic updates.

9. B. Installing a DNS server at each city as well as the central office allows the workstations in
each city to obtain their name resolution from local servers, thereby providing good response
time. If all the DNS servers were in the central office, name resolution would have to cross the
routers, introducing latency and the potential for no service if the link ever went down. The
namespace in a single Active Directory tree must be contiguous. If you create a second-level
domain for each city, you need to create multiple Active Directory trees.

10. C. From the Monitoring tab, you can perform simple recursive queries to see if DNS servers are
running and listening to queries. You can either run the tests immediately or set a schedule on
which the tests will run.

11. C. DNS has the capability to create subdomains of a central corporate domain, and a subdo-
main can be delegated to a DNS server in each location for independent management. The
entire company could use a single DNS server at corporate headquarters with the multiple
domains, but then each namespace would not be managed locally at each location.

12. D. The root name server has authority for the root domain and will reply with the IP address
of a name server for the .gov top-level domain. With the IP address of the top-level domain,
the system can now query it for the bigbrother address.

13. A. If the TTL is too small, the load on the DNS server increases.
14. A, D, E, G. Even though it’s best practice to have all the records associated with DNS as a part of each installation, name resolution will still function properly with just the fundamental records. The host record, or A record, is the basic record that contains the mapping between the logical name and the IP address. This is the heart of DNS. The name server records identify the DNS servers that are available for this network. The start of authority record, or SOA record, contains the basic configuration of the DNS service. The service record, while not essential to a traditional DNS, is critical to Active Directory because it’s used to identify the domain controllers for login and other query information. The pointer record is used for reverse lookups; although it’s very useful, it’s not required for standard functionality. The alias record is needed only if you plan to have different names associated with the same physical address. The mail exchanger record is necessary only if you are using DNS to locate mail servers.

15. C. Most mail servers can be configured to reject incoming mail from servers whose IP addresses cannot be resolved with a reverse lookup.

16. A. Though it’s possible to set up another A record pointing www.stellacon.com to the IP address of the server, such a record would not be configured properly. A CNAME record, sometimes called an Alias record, should be configured to point www at chaos.stellacon.com. Options C and D would not solve the problem.

17. C. The serial number is used by secondary servers to determine whether the zone data has changed. By default, this value is automatically updated with Windows Server 2008 DNS server. The zone’s TTL is used to determine when to query for an update of the zone file from the master server unless a Notify message has been sent by the master server in the interim.

18. B. An iterative query results in the server sending back its best answer from data residing in its cache or local zones. A recursive query is one in which the server goes out and attempts to find the answer by querying other DNS servers.

19. D. The command `ipconfig /flushdns` clears the local DNS cache.

20. B. Since you didn’t set up the new secondary servers with their own NS records, they aren’t listed on the Name Servers tab of the zone’s Properties dialog box. Therefore, by default these servers cannot transfer zone data. By going into the Zone Transfers tab, you can configure the servers to receive updates. Option A is incorrect because the main secondary master server can indeed receive zone transfers. Option C is incorrect because DNS servers can perform zone transfers from other secondary servers. Option D has nothing to do with zone transfers and cannot be true since the main secondary master can perform zone transfers.
Chapter 3

Active Directory Planning and Installation
In the previous chapters, you’ve seen some factors you need to take into account when planning for Active Directory, such as your company’s physical and logical structure and the need for centralized or decentralized administration. The time you spend understanding these concepts is very important because the success of your Active Directory implementation depends on them.

Now that you are familiar with Domain Name System (DNS), you need to verify that the computer you upgrade to a domain controller (DC) meets the basic filesystem and network connectivity requirements so that Active Directory runs smoothly and efficiently in your organization.

Next, you’ll explore the concept of domain functional levels, which essentially determine what sorts of domain controllers you can use in your environment. For instance, in the Windows Server 2000 Native domain functional level, you can include Server 2008, Server 2003, and 2000 Server domain controllers, but the functionality of the domain is severely limited.

Once you understand how to properly plan for your domain environment, you will learn how to install Active Directory, which you accomplish by promoting a Windows Server 2008 computer to a domain controller. We will also discuss a new feature in Windows Server 2008 called a read-only domain controller (RODC).

After you become familiar with the initial Active Directory installation, you will learn how to install and configure Application Directory partitions. These partitions provide replicable data repositories using the Active Directory paradigm, but they don’t actually store any security principals, such as users or groups. As the name implies, you use Application Directory partitions primarily to store data generated by applications that need to be replicated throughout your network environments independently of the rest of Active Directory.

The final section of this chapter deals with integrating DNS with Active Directory. You learned about DNS in Chapter 2, but here we will review how DNS implements with Active Directory.

Verifying the Filesystem

When planning your Active Directory deployment, the filesystem the operating system uses is an important concern for many reasons. First, the filesystem can provide the ultimate level of security for all of the information stored on the server itself. Second, it is responsible for managing and tracking all of this data. Furthermore, certain features are available only on certain filesystems. These features include encryption support, remote file access, remote storage, disk redundancy, and disk quotas.
The Windows Server 2008 platform supports two filesystems:

- **File Allocation Table 32 (FAT32) filesystem**
- **Windows New Technology File System (NTFS)**

The fundamental difference between FAT32 and NTFS partitions is that NTFS allows for filesystem-level security. Support for FAT32 is mainly included in Windows Server 2008 for backward compatibility and machines that need to dual-boot. For example, if you want to configure a single computer to boot into Windows 98 and Windows Server 2003, you need to have at least one FAT or FAT32 partition.

Windows Server 2008 uses Version 5 of NTFS. There are many other benefits to using NTFS, including support for the following:

- **Disk quotas** In order to restrict the amount of disk space used by users on the network, systems administrators can establish disk quotas. By default, Windows Server 2008 supports disk quota restrictions at the volume level. That is, you can restrict the amount of storage space a specific user uses on a single disk volume. Third-party solutions that allow more granular quota settings are also available.

- **Filesystem encryption** One of the fundamental problems with network operating systems (NOSs) is that systems administrators are often given full permission to view all files and data stored on hard disks, which can be a security and privacy concern. In some cases, this is necessary. For example, in order to perform backup, recovery, and disk management functions, at least one user must have all permissions. Windows Server 2008 and NTFS address these issues by allowing for filesystem encryption. Encryption essentially scrambles all of the data stored within files before they are written to the disk. When an authorized user requests the files, they are transparently decrypted and provided. By using encryption, you can prevent the data from being used in the case where it is stolen or intercepted by an unauthorized user, even a system administrator.

- **Dynamic volumes** Protecting against disk failures is an important concern for production servers. Although earlier versions of Windows NT supported various levels of Redundant Array of Independent Disks (RAID) technology, software-based solutions had some shortcomings. Perhaps the most significant was that administrators needed to perform server reboots to change RAID configurations. Also, you could not make some configuration changes without completely reinstalling the operating system. With Windows Server 2008’s support for dynamic volumes, systems administrators can change RAID and other disk configuration settings without needing to reboot or reinstall the server. The end result is greater data protection, increased scalability, and increased uptime.

- **Mounted drives** By using mounted drives, systems administrators can map a local disk drive to an NTFS directory name. This helps them organize disk space on servers and increase manageability. By using mounted drives, you can mount the C:\Users directory to an actual physical disk. If that disk becomes full, you can copy all of the files to another, larger drive without changing the directory pathname or reconfiguring applications.

- **Remote storage** Systems administrators often notice that as soon as they add more space, they must plan the next upgrade. One way to recover disk space is to move infrequently used
files to tape. However, backing up and restoring these files can be quite difficult and time consuming. Systems administrators can use the remote storage features supported by NTFS to automatically off-load seldom-used data to tape or other devices, but the files remain available to users. If a user requests an archived file, Windows Server 2008 can automatically restore the file from a remote storage device and make it available. Using remote storage like this frees up systems administrators’ time and allows them to focus on tasks other than micromanaging disk space.

Self-Healing NTFS In previous versions of the Windows Server operating system, if you had to fix a corrupted NTFS volume, you used a tool called Chkdsk.exe. The disadvantage of this tool is that the Windows Server’s availability was disrupted. If this server was your domain controller, that could stop domain logon authentication.

To help protect the Windows Server 2008 NTFS filesystem, Microsoft now uses a feature called self-healing NTFS. Self-healing NTFS attempts to fix corrupted NTFS filesystems without taking them offline. Self-healing NTFS allows an NTFS filesystem to be corrected without running the Chkdsk.exe utility. New features added to the NTFS kernel code allow disk inconsistencies to be corrected without system downtime.

Setting Up the NTFS Partition

Although the features mentioned in the previous section probably compel most systems administrators to use NTFS, more reasons make using it mandatory. The most important reason is that the Active Directory data store must reside on an NTFS partition. Therefore, before you begin installing Active Directory, make sure you have at least one NTFS partition available. Also, be sure you have a reasonable amount of disk space available (at least 4GB). Because the size of the Active Directory data store will grow as you add objects to it, also be sure you have adequate space for the future.

Exercise 3.1 shows you how to use the administrative tools to view and modify disk configuration.

Before you make any disk configuration changes, be sure you completely understand their potential effects; then, perform the test in a lab environment and make sure you have good, verifiable backups handy. Changing partition sizes and adding and removing partitions can result in a total loss of all information on one or more partitions.

If you want to convert an existing partition from FAT or FAT32 to NTFS, you need to use the CONVERT command-line utility. For example, the following command converts the C: partition from FAT to NTFS:

CONVERT c: /fs:ntfs
EXERCISE 3.1

Viewing Disk Configuration

1. Click Start ➤ Administrative Tools ➤ Computer Management.

2. Under the Storage branch, click Disk Management.

The Disk Management program shows you the logical and physical disks that are currently configured on your system. Note that information about the size of each partition is also displayed (in the Capacity column).

3. Use the View menu to choose various depictions of the physical and logical drives in your system.

4. To see the available options for modifying partition settings, right-click any of the disks or partitions. This step is optional.

If the partition you are trying to convert contains any system files or the Windows Server 2008 virtual memory page file, a message informs you that the conversion will take place during the next machine reboot. After the partition is converted to NTFS, the computer automatically reboots again, and you will be able to continue using the system.
Windows Server 2008 allows you to convert existing FAT or FAT32 partitions to NTFS. However, this is a one-way process. You cannot convert an NTFS partition to any other filesystem without losing data. If you need to make such a conversion, the recommended process involves backing up all existing data, deleting and reformattting the partition, and then restoring the data.

Only the Windows NT, 2000, XP, Vista, 2003, and 2008 operating systems (all based on the original NT architecture) can read and write to and from NTFS partitions. Therefore, if you are using other operating systems on the same computer, be sure you fully understand the effects of converting the filesystem.

Verifying Network Connectivity

Although a Windows Server 2008 computer can be used by itself without connecting to a network, you will not harness much of the potential of the operating system without network connectivity. Because the fundamental purpose of a network operating system is to provide resources to users, you must verify network connectivity.

Basic Connectivity Tests

Before you begin to install Active Directory, you should perform several checks of your current configuration to ensure that the server is configured properly on the network. You should test the following:

Network adapter At least one network adapter should be installed and properly configured on your server. A quick way to verify that a network adapter is properly installed is to use the Computer Management administrative tool. Under Device Manager, Network Adapters branch, you should have at least one network adapter listed. If you do not, use the Add Hardware icon in the Control Panel to configure hardware.

TCP/IP Make sure TCP/IP is installed, configured, and enabled on any necessary network adapters. The server should also be given a valid IP address and subnet mask. Optionally, you may need to configure a default gateway, DNS servers, WINS servers, and other network settings. If you are using DHCP, be sure that the assigned information is correct. It is always a good idea to use a static IP address for servers because IP address changes can cause network connectivity problems if they are not handled properly.

Internet access If the server should have access to the Internet, verify that it is able to connect to external web servers and other machines outside the large area network (LAN). If the server is unable to connect, you might have a problem with the TCP/IP configuration.

LAN access The server should be able to view other servers and workstations on the network. You can quickly verify this type of connectivity by clicking Start ➔ Network. If other machines are not visible, ensure that the network and TCP/IP configuration are correct for your environment.

Client access Network client computers should be able to connect to your server and view any shared resources. A simple way to test connectivity is to create a share and test whether other machines are able to see files and folders within it. If clients cannot access the machine, ensure that both the client and server are configured properly.

Wide area network (WAN) access If you’re working in a distributed environment, you should ensure that you have access to any remote sites or users that will need to connect to this machine. Usually, this is a simple test that can be performed by a network administrator.

Tools and Techniques for Testing Network Configuration

In some cases, verifying network access can be quite simple. You might have some internal and external network resources with which to test. In other cases, it might be more complicated. You can use several tools and techniques to verify that your network configuration is correct:

Using the ipconfig utility By typing `ipconfig/all` at the command prompt, you can view information about the TCP/IP settings of a computer. Figure 3.1 shows the types of information you’ll receive.

Using the ping command The ping command was designed to test connectivity to other computers. You can use the command by simply typing `ping` and then an IP address or hostname at the command line. The following are some steps for testing connectivity using the ping command.

Ping other computers on the same subnet. You should start by pinging a known active IP address on the network to check for a response. If you receive one, then you have connectivity to the network.

Next, check to see if you can ping another machine using its hostname. If this works, then local name resolution works properly.
Ping computers on different subnets. In order to ensure that routing is set up properly, you should attempt to ping computers that are local on other subnets (if any exist) on your network. If this test fails, try pinging the default gateway. Any errors may indicate a problem in the network configuration or a problem with a router.

Some firewalls, routers, or servers on your network or on the Internet might prevent you from receiving a successful response from a ping command. This is usually for security reasons (malicious users might attempt to disrupt network traffic using excessive pings as well as redirects and smurf attacks). If you do not receive a response, do not assume that the service is not available. Instead, try to verify connectivity in other ways. For example, you can use the TRACERT command to demonstrate connectivity beyond your subnet, even if other routers ignore Internet Control Message Protocol (ICMP) responses. Since the display of a second router implies connectivity, the path to an ultimate destination shows success even if it does not display the actual names and addresses.

FIGURE 3.1 Viewing TCP/IP information with the ipconfig utility

Browsing the network To ensure that you have access to other computers on the network, be sure that they can be viewed by clicking Start ➤ Network. This verifies that your name resolution parameters are set up correctly and that other computers are accessible. Also, try connecting to resources (such as file shares or printers) on other machines.

Browsing the Internet You can quickly verify whether your server has access to the Internet by visiting a known website, such as www.microsoft.com. Success ensures that you have access outside of your network. If you do not have access to the Web, you might need to verify your proxy server settings (if applicable) and your DNS server settings.
By performing these simple tests, you can ensure that you have a properly configured network connection and that other network resources are available.

Understanding Domain and Forest Functionality

Windows Server 2008 Active Directory uses a concept called domain and forest functionality. The functional level that you choose during the Active Directory installation determines which features your domain can use.

Windows Server 2003 and 2008 include additional forest functionality compared to Windows 2000. Forest functionality applies to all of the domains in a forest.

About the Domain Functional Level

Windows Server 2008 will support the following domain functional levels:

- Windows 2000 Native
- Windows 2003
- Windows Server 2008

Which function level you use depends on the domain controllers you have installed on your network. This is an important fact to remember. You can use Windows NT 4, Windows 2000 Server, and Windows 2003 member servers in the Windows Server 2008 function level, as long as all domain controllers are running Windows Server 2008.

When you install the first domain controller in a new Windows Server 2008 forest, the domain functional level is set by default to Windows 2000 Native. Windows 2000 Native is the default setting because once a domain function level is upgraded, it cannot be downgraded.

Table 3.1 shows features available in Windows 2000 Native, Windows 2003, and Windows Server 2008 domain functional levels.

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Fine-grained password policies.</td>
<td>Disabled</td>
<td>Disabled</td>
<td>Enabled</td>
</tr>
<tr>
<td>Read-only domain controller (RODC).</td>
<td>Disabled</td>
<td>Enabled</td>
<td>Enabled</td>
</tr>
<tr>
<td>Last interactive logon information.</td>
<td>Disabled</td>
<td>Disabled</td>
<td>Enabled</td>
</tr>
</tbody>
</table>
Chapter 3 • Active Directory Planning and Installation

TABLE 3.1 Comparing Domain Functional Levels (continued)

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Advanced Encryption Services (AES 128 and 256) support for the Kerberos protocol.</td>
<td>Disabled</td>
<td>Disabled</td>
<td>Enabled</td>
</tr>
<tr>
<td>Distributed File System replication support for Sysvol.</td>
<td>Disabled</td>
<td>Disabled</td>
<td>Enabled</td>
</tr>
<tr>
<td>Ability to Redirect the Users and Computers containers.</td>
<td>Disabled</td>
<td>Enabled</td>
<td>Enabled</td>
</tr>
<tr>
<td>Ability to rename domain controllers.</td>
<td>Disabled</td>
<td>Enabled</td>
<td>Enabled</td>
</tr>
<tr>
<td>Logon Time stamp updates.</td>
<td>Disabled</td>
<td>Enabled</td>
<td>Enabled</td>
</tr>
<tr>
<td>Kerberos KDC key version numbers.</td>
<td>Disabled</td>
<td>Enabled</td>
<td>Enabled</td>
</tr>
<tr>
<td>InetOrgPerson objects can have passwords.</td>
<td>Disabled</td>
<td>Enabled</td>
<td>Enabled</td>
</tr>
<tr>
<td>Converts NT groups to domain local and global groups.</td>
<td>Enabled</td>
<td>Enabled</td>
<td>Enabled</td>
</tr>
<tr>
<td>SID history.</td>
<td>Enabled</td>
<td>Enabled</td>
<td>Enabled</td>
</tr>
<tr>
<td>Group nesting.</td>
<td>Enabled</td>
<td>Enabled</td>
<td>Enabled</td>
</tr>
<tr>
<td>Universal groups.</td>
<td>Enabled</td>
<td>Enabled</td>
<td>Enabled</td>
</tr>
</tbody>
</table>

About Forest Functionality

Windows Server 2008 includes new forest functionality features. Forest functionality applies to all of the domains in a forest. All domains have to be upgraded to Windows Server 2008 before the forest can be upgraded to Windows Server 2008.
There are three levels of forest functionality:

- Windows Server 2003
- Windows Server 2008

Windows Server 2003 and 2008 have the same forest features. Some of the features are described in the following list:

Global Catalog replication enhancements When an administrator adds a new attribute to the Global Catalog, only those changes are replicated to other global catalogs in the forest. This can significantly reduce the amount of network traffic generated by replication.

Defunct schema classes and attributes You can never permanently remove classes and attributes from the Active Directory schema, but you can mark them as defunct so that they cannot be used. With Windows Server 2003 and 2008 forest functionality, you can redefine the defunct schema attribute so that it occupies a new role in the schema.

Forest trusts Previously, system administrators had no easy way of granting permission on resources in different forests. Windows Server 2003 and 2008 resolve some of these difficulties by allowing trust relationships between separate Active Directory forests. Forest trusts act much like domain trusts, except that they extend to every domain in two forests. Note that all forest trusts are intransitive.

Linked value replication Windows Server 2003 and 2008 use a concept called linked value replication. With linked value replication, only the user record that has been changed is replicated (not the entire group). This can significantly reduce network traffic associated with replication.

Renaming domains Although the Active Directory domain structure was originally designed to be flexible, there were several limitations. Due to mergers, acquisitions, corporate reorganizations, and other business changes, you may need to rename domains. In Windows Server 2003 and 2008, you can change the DNS and NetBIOS names for any domain, as well as reposition a domain within a forest. Note that this operation is not as simple as just issuing a `rename` command. Instead, there’s a specific process you must follow to make sure that the operation is successful. Fortunately, when you properly follow the procedure, Microsoft supports domain renaming.

Other features Windows Server 2003 and 2008 support the following features:

- Improved replication algorithms and dynamic auxiliary classes are designed to increase performance, scalability, and reliability.
- Active Directory Federation Services (AD FS, also known as Trustbridge) handles federated identity management. Federated identity management is a standards-based information technology process that enables distributed identification, authentication, and authorization across organizational and platform boundaries. The AD FS solution
in Windows Server 2003 (Release 2) and 2008 helps administrators address these challenges by enabling organizations to securely share a user’s identity information.

- Active Directory Application Mode (ADAM) was developed by Microsoft as part of Windows Server 2008 Active Directory for organizations that require flexible support for directory-enabled applications. ADAM, which uses the Lightweight Directory Access Protocol (LDAP), is a directory service that adds flexibility and helps organizations avoid increased infrastructure costs.

Many of the concepts related to domain and forest functional features are covered in greater detail later in this book.

Planning the Domain Structure

Once you have verified the technical configuration of your server for Active Directory, it’s time to verify the Active Directory configuration for your organization. Since the content of this chapter focuses on installing the first domain in your environment, you really only need to know the following information prior to beginning setup:

- The DNS name of the domain
- The computer name or the NetBIOS name of the server (which will be used by previous versions of Windows to access server resources)
- Which domain function level the domain will operate in
- Whether or not other DNS servers are available on the network
- What type of and how many DNS servers are available on the network

However, if you will be installing additional domain controllers in your environment or will be attaching to an existing Active Directory structure, you should also have the following information:

- If this domain controller will join an existing domain, you should know the name of that domain. You will also either require a password for a member of the Enterprise Administrators group for that domain or have someone with those permissions create a domain account before promotion.
- You should know whether the new domain will join an existing tree and, if so, the name of the tree it will join.
- You should know the name of a forest to which this domain will connect (if applicable).
Installing Active Directory

Installing Active Directory is an easy and straightforward process as long as you planned adequately and made the necessary decisions beforehand. In this section, you’ll look at the actual steps required to install the first domain controller in a given environment.

With early versions of the Windows NT operating system, you had to determine during installation the role of your server as it related to the domain controller or member server. Choices included making the machine a primary domain controller (PDC), a backup domain controller (BDC), or a member server. This was an extremely important decision because, even though you could promote a BDC to a PDC, you had to completely reinstall the operating system to make any changes to the server’s role between a domain controller and a member server.

Instead of forcing you to choose during setup whether or not the machine will participate as a domain controller, Windows Server 2008 allows you to promote servers after you install Active Directory. Therefore, at the end of the setup process, all Windows Server 2008 computers are configured as either member servers (if they are joined to a domain) or stand-alone servers (if they are part of a workgroup). The process of converting a member server to a domain controller is known as *promotion*. Through the use of a simple and intuitive wizard, systems administrators can quickly configure servers to be domain controllers after installation.

Later in this section, you’ll follow the steps you need to take to install Active Directory by promoting the first domain controller in the domain. These steps are performed using the Active Directory Installation Wizard (*DCPROMO*). This tool is designed to be used after a server has been installed in the environment. As part of the promotion process, the server creates or receives information related to Active Directory configuration.

The first step in installing Active Directory is promoting a Windows Server 2008 computer to a domain controller. The first domain controller in an environment serves as the starting point for the forest, trees, domains, and the Operations Master roles.

Exercise 3.2 shows the steps you need to follow to promote an existing Windows Server 2008 to a domain controller. In order to complete the steps in this exercise, you must have already installed and configured a Windows Server 2003 or 2008 computer. You also need a DNS server that supports SRV records. If you do not have a DNS server available, the Active Directory Installation Wizard automatically configures one for you.

EXERCISE 3.2

Promoting a Domain Controller

1. Start the Active Directory Installation Wizard by clicking Start ➤ Run and typing *dcpromo*.

2. When the Welcome screen appears, check the box that says “Use Advanced Mode Installation” and then click Next.
3. The “Choose a Deployment Configuration” box appears. Choose the second option, “Create a new domain in a new forest”. Then click Next.

4. A warning box may appear stating that the local administrator account will become the domain administrator account. If this box appears, click Yes.

5. The Name the Forest Root Domain box appears, asking you to enter the full DNS name of your domain. Enter your domain’s DNS name and click Next. (Use mycompany.com if you do not have a domain name.)

6. After the DNS name gets verified, a NetBIOS name box appears with your default NetBIOS name (for example, mycompany). Leave the default and click Next.
A NetBIOS name can be up to 15 characters. To make it easier to remember and type the name, you should limit yourself to the English alphabet characters and numbers.

7. The “Set Forest Functional Level” box appears. Use the pull down menu and choose Windows Server 2003 or Windows Server 2008 and then click Next.

8. When the Additional Domain Controller Options page appears, make sure DNS Server is checked (if you need to install DNS). Also notice the option labeled “Read-Only Domain Controller (RODC).” This is where you will create your RODC (RODC installation and configuration are covered in later chapters of this book). Since this is the first domain controller in your new domain, the RODC option is grayed out. Click Next.
9. A Static IP Assignment box may appear. If it does, choose the Yes option and configure a static IP address for your computer. If this box does not appear, go on to the next step.

10. In the Location for Database, Log Files, and Sysvol page, specify the filesystem locations for the Active Directory database and log files. Microsoft recommends that these files reside on separate physical devices in order to improve performance and to provide for recoverability. The default filesystem location is in a directory called NTDS located within the system root. However, you can choose any folder located on a FAT32 or NTFS partition (Sysvol requires NTFS). After you’ve specified the filesystem locations (you can leave the defaults if you like), click Next.

11. On the Directory Services Restore Mode Administrator Password page, provide a password to be used to restore Active Directory in the event of its loss or corruption. Note that this password does not have to correspond with passwords set for any other account. For this exercise, use the following password:

P@ssw0rd
After confirming the password, click Next.

12. Based on the installation options you’ve selected, the wizard presents a summary of your choices. It is a good idea to copy and paste this information into a text file to refer to later. Verify the options, and then click Next to begin the Active Directory installation process.

A box with a book that is being written to will appear as Active Directory is installing.

13. Once Active Directory has been installed, you are prompted to reboot the system. After the reboot, you can access the administrative tools that are related to the configuration and management of Active Directory.
Verifying Active Directory Installation

Once you have installed and configured Active Directory, you’ll want to verify that you have done so properly. In the following sections, you’ll look at methods for doing this.

Using Event Viewer

The first (and perhaps most informative) way to verify the operations of Active Directory is to query information stored in the Windows Server 2008 event log. You can do this using the Windows Server 2008 Event Viewer. Exercise 3.3 walks you through this procedure. Entries seen with the Event Viewer include errors, warnings, and informational messages.

In order to complete the steps in this exercise, you must have configured the local machine as a domain controller.

EXERCISE 3.3

Viewing the Active Directory Event Log

1. Open the Event Viewer snap-in from the Administrative Tools program group.
2. In the left pane, under Applications and Services Logs, select Directory Service.
3. In the right pane, you can sort information by clicking column headings. For example, you can click the Source column to sort by the service or process that reported the event.

![Event Viewer screenshot](image-url)
4. Double-click an event in the list to see the details for that item. Note that you can click the Copy button to copy the event information to the Clipboard. You can then paste the data into a document for later reference. Also, you can move between items using the up and down arrows. Click OK when you are done viewing an event.

5. Filter an event list by right-clicking the Directory Service item in the left pane, and selecting the Filter tab. Note that filtering does not remove entries from the event logs—it only restricts their display.

6. To verify Active Directory installation, look for events related to the proper startup of Active Directory, such as Event ID 1000 (Active Directory Startup Complete) and 1394 (Attempts To Update The Active Directory Database Are Succeeding). Also, be sure to examine any Error or Warning messages because these could indicate problems with DNS or other necessary services.

7. When you’re done viewing information in the Event Viewer, close the application.

Real World Scenario

Gaining Insight through Event Viewer

Despite its simple user interface and somewhat limited GUI functionality, the Event Viewer tool can be your best ally in isolating and troubleshooting problems with Windows Server 2008. The Event Viewer allows you to view information that is stored in various log files that are maintained by the operating system. This list of logs includes the following:

- **Application** Stores messages generated by programs running on your system. For example, SQL Server 2005 might report the completion of a database backup job within the Application log.

- **Security** Contains security-related information, as defined by your auditing settings. For example, you could see when users have logged onto the system or when particularly sensitive files have been accessed.

- **System** Contains operating system–related information and messages. Common messages might include a service startup failure or information about when the operating system was last rebooted.

- **Directory service** Stores messages and events related to how Active Directory functions. For example, details related to replication might be found here.

- **DNS server** Contains details about the operations of the DNS service. This log is useful for troubleshooting replication or name resolution problems.
In addition to providing information about the status of events related to Active Directory, the Event Viewer shows you useful information about other system services and applications. You should routinely use the tool.

Using Active Directory Administrative Tools

After a server has been promoted to a domain controller, you will see various tools added to the Administrative Tools program group (see Figure 3.2).

These include the following:

Active Directory Domains and Trusts Use this tool to view and change information related to the various domains in an Active Directory environment. This MMC snap-in also allows you to set up shortcut trusts.

Active Directory Sites and Services Use this tool to create and manage Active Directory sites and services to map to an organization’s physical network infrastructure. Sites and services are covered in detail in Chapter 4, “Configuring Sites and Replication.”

Active Directory Users and Computers User and computer management is fundamental for an Active Directory environment. The Active Directory Users and Computers tool allows you to set machine- and user-specific settings across the domain. This tool is discussed throughout many chapters in this book.
A good way to make sure that Active Directory is accessible and functioning properly is to run the Active Directory Users And Computers tool. When you open the tool, you should see a configuration similar to that shown in Figure 3.3. Specifically, you should make sure that the name of the domain you created appears in the list. You should also click the Domain Controllers folder and ensure that the name of your local server appears in the right pane. If your configuration passes these two checks, Active Directory is present and configured.
Testing from Clients

The best test of any solution is to simply verify that it works the way you had intended in your environment. When it comes to using Active Directory, a good test is to ensure that clients can view and access the various resources presented by Windows Server 2008 domain controllers. In the following sections, you’ll look at several ways to verify that Active Directory is functioning properly.

Verifying Client Connectivity

Perhaps the most relevant way to test Active Directory is by testing client operations. Using computers running previous versions of Windows (such as Windows NT 4 or Windows 95/98), you should be able to see your server on the network. Earlier versions of Windows-based clients should recognize the NetBIOS name of the domain controller. Windows 2000 and newer computers should also be able to see resources in the domain, and users should be able to browse for resources using the My Network Places icon.

If you are unable to see the recently promoted server on the network, there is likely a network configuration error. If only one or a few clients are unable to see the machine, the problem is probably related to client-side configuration. To fix this, make sure the client computers have the appropriate TCP/IP configuration (including DNS server settings) and that they can see other computers on the network.

If the new domain controller is unavailable from any of the other client computers, you should verify the proper startup of Active Directory using the methods mentioned earlier in this chapter. If Active Directory has been started, ensure that the DNS settings are correct. Finally, test network connectivity between the server and the clients by accessing the My Network Places icon.

Joining a Domain

If Active Directory has been properly configured, clients and other servers should be able to join the domain. Exercise 3.4 outlines the steps you need to take to join a Windows XP Professional computer to the domain.

In order to complete this exercise, you must have already installed and properly configured at least one Active Directory domain controller and a DNS server that supports SRV records in your environment. In addition to the domain controller, you need at least one other computer, not configured as a domain controller, running one of the following operating systems: Windows 2000, Windows XP Professional (Windows XP Home Edition cannot join a domain), Vista, Windows Server 2003, or Windows Server 2008.

Once clients are able to successfully join the domain, they should be able to view Active Directory resources using the My Network Places icon. This test validates the proper functioning of Active Directory and ensures that you have connectivity with client computers.
Creating and Configuring Application Data Partitions

Organizations store many different kinds of information in various places. For the IT departments that support this information, it can be difficult to ensure that the right information is available when and where it is needed. Windows Server 2008 uses a feature called application data partitions, which allows systems administrators and application developers to store custom information within Active Directory. The idea behind application data partitions is that, since you already have a directory service that can replicate all kinds of information, you might as well use it to keep track of your own information.

Developing distributed applications that can, for example, synchronize information across an enterprise is not a trivial task. You have to come up with a way to transfer data between remote sites (some of which are located across the world), and you have to ensure that the data is properly replicated. By storing application information in Active Directory, you can take advantage of its storage mechanism and replication topology. Application-related information stored on domain controllers benefits from having fault-tolerance features and availability.
Take a look at the following simple example to understand how this can work. Suppose your organization has developed a customer Sales Tracking and Inventory application. The company needs to make the information that is stored by this application available to all of its branch offices and users located throughout the world. However, the goal is to do this with the least amount of IT administrative effort. Assuming that Active Directory has already been deployed throughout the organization, developers can build support into the application for storing data within Active Directory. They can then rely on Active Directory to store and synchronize the information between various sites. When users request updated data from the application, the application can obtain this information from the nearest domain controller that hosts a replica of the Sales Tracking and Inventory data.

Other types of applications can also benefit greatly from the use of application data partitions. Now that you have a good idea of what application data partitions are, let’s take a look at how you can create and manage them using Windows Server 2008 and Active Directory.

Creating Application Data Partitions

By default, after you create an Active Directory environment, you will not have any customer application data partitions. Therefore, the first step in making this functionality available is to create a new application data partition. You can use several tools to do this:

Third-party applications or application-specific tools Generally, if you are planning to install an application that can store information in the Active Directory database, you’ll receive some method of administering and configuring that data along with the application. For example, the setup process for the application might assist you in the steps you need to take to set up a new application data partition and to create the necessary structures for storing data.

The creation and management of application data partitions is an advanced Active Directory–related function. Be sure that you have a solid understanding of the Active Directory schema, Active Directory replication, LDAP, and your applications’ needs before you attempt to create new application data partitions in a live environment.

Active Directory Services Interface (ADSI) ADSI is a set of programmable objects that can be accessed through languages such as Visual Basic Scripting Edition (VBScript), Visual C#, Visual Basic .NET, and many other language technologies that support the Component Object Modeling (COM) standard. Through the use of ADSI, developers can create, access, and update data stored in Active Directory and in any application data partitions.

The LDP tool You can view and modify the contents of the Active Directory schema using LDAP-based queries. The LDP tool allows you to view information about application data partitions. In order to use this utility, you must first install the Windows Server 2008 Support Tools. The installer for this collection of utilities is located within the Windows Server 2008 installation media in the \Support\Tools folder. You’ll need to run the SupTools.msi file
in order to install the tools. Once the installation is complete, you can access the utility by clicking Start ➤ Run and typing **1dp.exe**. Figure 3.4 shows an example of connecting to a domain controller and browsing Active Directory information. For further details on using LDP, click the Support Tools Help icon (located within the Windows Support Tools program folder in the Start Menu). Additional details about working with the LDP tool are also available in the LDP.doc file, which is located within the folder into which you installed the Support Tools.

FIGURE 3.4 Using the LDP tool to view Active Directory schema information. Note: This tool isn’t released for Server 2008 and the current screenshot is from 2003.

![Image of LDP tool](image_url)

ntdsutil The ntdsutil utility is the main method by which systems administrators create and manage application data partitions on their Windows Server 2008 domain controllers. This utility’s specific commands are covered later in this chapter.

Creating and managing application data partitions can be fairly complex; such a project’s success depends on the quality of the architecture design. This is a good example of where IT staff and application developers must cooperate to ensure that data is stored effectively and that it is replicated efficiently.
You can create an application data partition in one of three different locations within an Active Directory forest:

- As a new tree in an Active Directory forest
- As a child of an Active Directory domain partition
 For example, you can create an Accounting application data partition within the Finance.MyCompany.com domain.
- As a child of another application data partition
 This method allows you to create a hierarchy of application data partitions.

As you might expect, you must be a member of the Enterprise Admins or Domain Admins group in order to be able to create application data partitions. Alternatively, you can be delegated the appropriate permissions to create new partitions.

Now that you have a good idea of the basic ways in which you can create application data partitions, let’s look at how replicas (copies of application data partition information) are handled.

Managing Replicas

A replica is a copy of any data stored within Active Directory. Unlike the basic information that is stored in Active Directory, application partitions cannot contain security principals. Also, not all domain controllers automatically contain copies of the data stored in an application data partition. System administrators can define which domain controllers host copies of the application data. This is a very important feature, since, if replicas are used effectively, administrators can find a good balance between replication traffic and data consistency. For example, suppose that 3 of your organization’s 30 locations require up-to-date accounting-related information. You might choose to only replicate the data to domain controllers located in the places that require the data. Limiting replication of this data reduces network traffic.

Replication is the process by which replicas are kept up to date. Application data can be stored and updated on designated servers, the same way basic Active Directory information (such as users and groups) is synchronized between domain controllers. Application data partition replicas are managed using the Knowledge Consistency Checker (KCC), which ensures that the designated domain controllers receive updated replica information. Additionally, the KCC uses all of Active Directory sites and connection objects (covered in Chapter 4) that you create to determine the best method to handle replication.

Removing Replicas

When you perform demotion on a domain controller, that server can no longer host an application data partition. If a domain controller contains a replica of application data partition information, you must remove the replica from the domain controller before you demote it. If a domain controller is the machine that hosts a replica of the application data partition, then the entire application data partition is removed and will be permanently lost. Generally, you want to do this only after you’re absolutely sure that your organization no longer needs access to the data stored in the application data partition.
Using ntdsutil to Manage Application Data Partitions

The primary method by which systems administrators create and manage application data partitions is through the ntdsutil command-line tool. You can launch this tool by simply entering `ntdsutil` at a command prompt. The `ntdsutil` command is both interactive and context-sensitive. That is, once you launch the utility, you’ll see an ntdsutil command prompt. At this prompt, you can enter various commands that set your context within the application. For example, if you enter the `domain management` command, you’ll be able to use domain-related commands. Several operations also require you to connect to a domain, a domain controller, or an Active Directory object before you perform a command.

![Note]

For complete details on using ntdsutil, see the Windows Server 2008 Help and Support Center.

Table 3.2 provides a list of the domain management commands supported by the ntdsutil tool. You can access this information by typing the following sequence of commands at a command prompt.

```
ntdsutil
domain management
help
```

Table 3.2 ntdsutil Domain Management Commands

<table>
<thead>
<tr>
<th>ntdsutil Domain Management Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Help or ?</td>
<td>Displays information about the commands that are available within the Domain Management menu of the ntdsutil command.</td>
</tr>
<tr>
<td>Connection or Connections</td>
<td>Allows you to connect to a specific domain controller. This will set the context for further operations that are performed on specific domain controllers.</td>
</tr>
<tr>
<td>Create NC PartitionDistinguishedName DNSName</td>
<td>Creates a new application directory partition.</td>
</tr>
<tr>
<td>Delete NC PartitionDistinguishedName</td>
<td>Removes an application data partition.</td>
</tr>
<tr>
<td>List NC Information PartitionDistinguishedName</td>
<td>Shows information about the specified application data partition.</td>
</tr>
</tbody>
</table>
The ntdsutil commands are all case-insensitive. Mixed-case was used in the table to make them easier to read. NC in commands stands for naming context, referring to the fact that this is a partition of the Active Directory schema.

Instead of focusing on details of specific commands and syntax related to ntdsutil, be sure that you really understand application directory partitions and how they and their replicas can be used.

Figure 3.5 provides an example of working with ntdsutil. The following commands were entered to set the context for further operations:

```
ntdsutil
domain management
connections
connect to server localhost
connect to domain ADTest
quit
list
```

<table>
<thead>
<tr>
<th>ntdsutil Domain Management Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>List NC Replicas</td>
<td>Returns information about all replicas for the specific application data partition.</td>
</tr>
<tr>
<td><code>PartitionDistinguishedName</code></td>
<td></td>
</tr>
<tr>
<td>Precreate <code>PartitionDistinguishedName</code> <code>ServerDNSName</code></td>
<td>Precreates cross-reference application data partition objects. This allows the specified DNS server to host a copy of the application data partition.</td>
</tr>
<tr>
<td>Remove NC Replica</td>
<td>Removes a replica from the specified domain controller.</td>
</tr>
<tr>
<td><code>PartitionDistinguishedName</code> <code>DCDNSName</code></td>
<td></td>
</tr>
<tr>
<td>Select Operation Target</td>
<td>Selects the naming context that will be used for other operations.</td>
</tr>
<tr>
<td>Set NC Reference Domain</td>
<td>Specifies the reference domain for an application data partition.</td>
</tr>
<tr>
<td><code>PartitionDistinguishedName</code> <code>DomainDistinguishedName</code></td>
<td></td>
</tr>
<tr>
<td>Set NC Replicate NotificationDelay</td>
<td>Defines settings for how often replication will occur for the specified application data partition.</td>
</tr>
<tr>
<td><code>PartitionDistinguishedName</code> <code>FirstDCNotificationDelay</code> <code>OtherDCNotificationDelay</code></td>
<td></td>
</tr>
</tbody>
</table>
FIGURE 3.5 Viewing naming contexts on the local domain controller

Configuring DNS Integration with Active Directory

There are many benefits to integrating Active Directory and DNS services.

- You can configure and manage replication along with other Active Directory components.
- You can automate much of the maintenance of DNS resource records through the use of dynamic updates.
- You will be able to set specific security options on the various properties of the DNS service.

Exercise 3.5 shows the steps that you can take to ensure that these integration features are enabled. You’ll look at the various DNS functions that are specific to interoperability with Active Directory.

Before you begin this exercise, make sure that the local machine is configured as an Active Directory domain controller and that DNS services have been properly configured. If you instructed the Active Directory Installation Wizard to automatically configure DNS, many of the settings mentioned in this section may already be enabled. However, you should verify the configuration and be familiar with how the options can be set manually.
EXERCISE 3.5

Configuring DNS Integration with Active Directory

1. Open the DNS snap-in from the Administrative Tools program group.

2. Right-click the icon for the local DNS Server, and select Properties. Click the Security tab. Notice that you can now specify which users and groups have access to modify the configuration of the DNS server. Make any necessary changes, and click OK.

3. Expand the local server branch and the Forward Lookup Zones folder.

4. Right-click the name of the Active Directory domain you created, and select Properties.

5. On the General tab, verify that the type is Active Directory-Integrated and that the Data Is Stored In Active Directory message is displayed. If this option is not currently selected, you can change it by clicking the Change button next to Type.
Exam Essentials

Summary

In this chapter, we covered the basics of implementing an Active Directory forest and domain structure, creating and configuring application data partitions, and setting the functional level of your domain and forest.

You are now familiar with how you can implement Active Directory. We carefully examined all the necessary steps and conditions you need to follow to install Active Directory on your network. First, you need to prepare for the Domain Name System (DNS) since Active Directory cannot be installed without the support of a DNS server. You also need to verify that the computer you upgrade to a domain controller (DC) meets some basic filesystem and network connectivity requirements so that Active Directory can run smoothly and efficiently in your organization. These are some of the most common things you will have to do when you deploy Active Directory.

We also covered the concept of domain functional levels, which essentially determine the kinds of domain controllers you can use in your environment. For instance, in the Windows 2000 functional level, you can include Server 2008, 2003 Server, and 2000 Server domain controllers, but the functionality of the domain is severely limited.

In this chapter, you also learned to install Active Directory, which you accomplish by promoting a Windows Server 2008 computer to a domain controller using DCPROMO. You also learned how to verify the installation by testing Active Directory from a client computer.

This chapter was limited in scope to examining the issues related to installing and configuring the first domain in an Active Directory environment. In later chapters, you’ll see how to create and manage more complex configurations.

Exam Essentials

Know the prerequisites for promoting a server to a domain controller. You should understand the tasks that you must complete before you attempt to upgrade a server to a domain controller. Also, you should have a good idea of the information you need in order to complete the domain controller promotion process.
Understand the steps of the Active Directory Installation Wizard (DCPROMO). When you run the Active Directory Installation Wizard, you’ll be presented with many different choices. You should understand the effects of the various options provided in each step of the wizard.

Be familiar with the tools that you will use to administer Active Directory. Three main administrative tools are installed when you promote a Windows Server 2008 to a domain controller. Be sure you know which tools to use for which types of tasks.

Understand the purpose of application data partitions. The idea behind application data partitions is that, since you already have a directory service that can replicate all kinds of security information, you can also use it to keep track of application data. The main benefit of storing application information in Active Directory is that you can take advantage of its storage mechanism and replication topology. Application-related information stored on domain controllers benefits from having fault-tolerance features and availability.
Review Questions

1. You are the system administrator of a large organization that has recently implemented Windows Server 2008. You have a few remote sites that do not have very tight security. You have decided to implement read-only domain controllers (RODC). What forest and function levels does the network need for you to do the install? (Choose all that apply.)
 A. Windows 2000 Mixed
 B. Windows 2000 Native
 C. Windows 2003
 D. Windows 2008

2. What is the maximum number of domains that a Windows 2008 Server computer, configured as a domain controller, may participate in at one time?
 A. 0
 B. 1
 C. 2
 D. Any number of domains

3. In order to support Windows Server 2000, 2003, and 2008 domain controllers in an Active Directory domain, which of the following modes must you use?
 A. Windows 2000 Native mode
 B. Windows Server 2003 mode
 C. Low-security mode
 D. Windows Server 2008 mode

4. The process of converting a Windows Server 2008 computer to a domain controller is known as
 A. Advertising
 B. Reinstallation
 C. Promotion
 D. Conversion

5. DNS server services can be configured using which of the following tools?
 A. The DNS administrative tool
 B. Computer Management
 C. Network Properties
 D. Active Directory Users and Computers
6. You are the systems administrator for the XYZ Products, Inc. Windows Server 2008–based network. You are upgrading a Windows Server 2008 computer to an Active Directory domain controller and need to decide the initial domain name. Your business has the following requirements:

- The domain name must be accessible from the Internet.
- The domain name must reflect your company’s proper name.

Which of the following domain names meet these requirements? (Choose two.)

A. XYZProducts.com
B. XYZProducts.domain
C. Server1.XYZProducts.org
D. XYZProductsServer2008

7. Recently, you have received several alerts that Server1 is running low on disk space. Server1 primarily stores users’ home directories. This problem has occurred several times in the past, and you want to restrict the amount of space that users can use on one of the volumes on the server. Which NTFS feature can you implement to limit the amount of disk space occupied by users?

A. Quotas
B. Encryption
C. Dynamic disks
D. Remote storage
E. Shared Folder Policy Objects

8. A system administrator is trying to determine which filesystem to use for a server that will become a Windows Server 2008 file server and domain controller. His company’s requirements include the following:

- The filesystem must allow for file-level security from within Windows 2008 Server.
- The filesystem must make efficient use of space on large partitions.
- The domain controller Sysvol must be stored on the partition.

Which of the following filesystems meets these requirements?

A. FAT
B. FAT32
C. HPFS
D. NTFS
Review Questions

9. For security reasons, you have decided that you must convert the system partition on your Windows Server 2008 from the FAT32 filesystem to NTFS. Which of the following steps must you take in order to convert the filesystem? (Choose two.)

A. Run the command `CONVERT /FS:NTFS` from the command prompt.
B. Rerun Windows Server 2008 Setup and choose to convert the partition to NTFS during the reinstallation.
D. Reboot the computer.

10. You are attempting to join various machines on your network to an Active Directory domain. Which of the following scenarios describe machines that can be added to the domain? Choose all that apply.

A. The machine is running Windows XP Professional.
B. The machine is a member of another domain.
C. The machine is running Windows Server 2008.
D. The machine is a member of a workgroup.

11. Which of the following operations is not supported by the Active Directory Installation Wizard?

A. Promoting a server to a domain controller
B. Demoting a domain controller to a server
C. Moving servers between domains
D. Starting the DNS Installation Wizard

12. Windows Server 2008 requires the use of which of the following protocols or services in order to support Active Directory? (Choose two.)

A. DHCP
B. TCP/IP
C. NetBEUI
D. IPX/SPX
E. DNS

13. You are promoting a Windows Server 2008 computer to an Active Directory domain controller for test purposes. This server will act alone on the network and does not need to be accessible from other machines. Which of the following domain names is a valid choice for the initial Active Directory domain? (Choose all that apply.)

A. mycompany.com
B. test.mycompany.com
C. mycompany.org
D. mycompany.net
14. You are promoting a Windows Server 2008 computer to an Active Directory domain controller for test purposes. The new domain controller will be added to an existing domain. While you are using Active Directory Installation Wizard, you receive an error message that prevents the server from being promoted. Which of the following might be the cause of the problem? (Choose all that apply.)
 A. The system does not contain an NTFS partition on which the Sysvol directory can be created.
 B. You do not have a Windows Server 2008 DNS server on the network.
 C. The TCP/IP configuration on the new server is incorrect.
 D. The domain has reached its maximum number of domain controllers.

15. You are installing the first domain controller in your Active Directory environment. What command do you run in order to begin the Active Directory Installation Wizard?
 A. DCPromote.exe
 B. DomainPromote.exe
 C. DCPromo.exe
 D. Promote.exe

16. You are the network administrator for a large company that creates widgets. You are asked by management to implement a new Windows Server 2008 system. You need to implement federated identity management. Which of the following will help you do this?
 A. Active Directory Federation Services
 B. Active Directory DNS Services
 C. Active Directory IIS Services
 D. Active Directory IAS Services

17. You are the systems administrator responsible for your company’s infrastructure. You think you have an issue with name resolution and you need to verify that you are using the correct hostname. You want to test DNS on the local system and need to see if the hostname “server-1” resolves to the IP address 10.1.1.1. Which of the following actions provides a solution to the problem?
 A. Add a DNS server to your local subnet.
 B. Add the mapping for the hostname “server-1” to the IP address 10.1.1.1 in the local system’s HOSTS file.
 C. Add an A record to your local WINS server.
 D. Add an MX record to your local DNS server.
18. As the lead administrator for 123 Inc., you are asked to solve a complex problem. Nobody on your staff can figure out why server1.yourcompany.com and server1.yourcompany.com can’t communicate properly across the WAN. Choose the most likely cause of the problem.
 A. A firewall blocking the traffic.
 B. A router access list is assigned to the WAN port and it is blocking traffic.
 C. No route exists between the workstations.
 D. You need to create a unique FQDN.

19. You are the network administrator for your company, which consists of 3 new Windows Server 2008 servers and 40 workstations running Windows XP Professional. You design a new name for your domain while deploying Active Directory. You consider DNS and how your clients will use it. Because you don’t own your DNS name publicly, only privately, what is your next step if you want to ensure that you are the owner of that domain for the future?
 A. Make a lease offer and hold the domain.
 B. Make a list of similar domain names to use.
 C. Register the name with a registration authority.
 D. Use a reverse lookup zone to configure this functionality.

20. You are the systems administrator for 123 Inc. You are in charge of your company’s DNS infrastructure, and you want to ensure that naming remains accurate in a distributed network environment. Choose the proper way to ensure that DNS will stay accurate across the enterprise.
 A. You must designate one DNS server as the primary master database for a specific set of addresses.
 B. You need to implement round robin ordering.
 C. You need to implement a secondary transfer zone server to ensure accuracy.
 D. You must open Port 52 on all firewalls and access control lists enterprise-wide.
Answers to Review Questions

1. C, D. The forest and function levels have to be Windows 2003 or above to install a RODC.

2. B. A domain controller can contain Active Directory information for only one domain. If you want to use a multidomain environment, you must use multiple domain controllers configured in either a tree or forest setting.

4. C. Promotion is the process of making a Windows Server 2008 computer a new domain controller. This is the only way to install Active Directory.

5. A. The DNS administrative tool is designed to configure settings for the DNS server service. You can also manually edit DNS zone files using a standard text file editor.

6. A, C. Both of these domain names are based on the standard DNS top-level domain names and can therefore be made accessible over the Internet. Although you could use other top-level domain names (such as those provided in choices B and D), these names would not be automatically resolvable over the Internet.

7. A. Quotas allow systems administrators to place restrictions on the amount of disk space used on NTFS volumes. Quotas are native to NTFS and cannot be implemented on FAT32 drives. Options B, C, and D are available on NTFS partitions, but they cannot be used to restrict disk space. Option E is not an option related to disk storage management.

8. D. NTFS has file-level security and makes efficient usage of disk space. Since this machine is to be configured as a domain controller, the configuration requires at least one NTFS partition in order to store the Sysvol information.

9. A, D. In order to convert the system partition to NTFS, you must first use the `CONVERT` command-line utility and then reboot the server. During the next boot, the filesystem will be converted.

10. A, B, C, D. All of the above configurations can be joined to a domain. Note that if a machine is a member of another domain, it must first be removed from that domain before it can be joined to another. Join it to a workgroup to remove it from the old domain and then join it to the new domain.

11. C. The only way to move a domain controller between domains is to demote it from its current domain and then promote it into another domain. You cannot move a domain controller automatically using any of the built-in tools included with Windows Server 2008.

12. B, E. The use of LDAP and TCP/IP is required to support Active Directory. TCP/IP is the network protocol favored by Microsoft, who determined that all Active Directory communication would occur on TCP/IP. DNS is required because Active Directory is inherently dependent upon the domain model. DHCP is used for automatic address assignment, and is not required. Similarly, NetBEUI and IPX/SPX are not available network protocols in Windows Server 2008.
13. A, B, C, D. All of the domain names listed may be used. Although it is recommended, a registered Internet domain name is not required for installing Active Directory.

14. A, C. The Sysvol directory must be created on an NTFS partition. If such a partition is not available, you will not be able to promote the server to a domain controller. An error in the network configuration might prevent the server from connecting to another domain controller in the environment.

15. C. You use DCpromo.exe to begin the process of promoting or demoting a server to/from a domain controller.

16. A. You’ll need to use Active Directory Federation Services (AD FS) in order to implement federated identity management. Federated identity management is a standards-based technology and information technology process that will enable distributed identification, authentication, and authorization across organizational and platform boundaries. The AD FS solution in Windows Server 2008 helps administrators address these challenges by enabling organizations to securely share a user’s identity information.

17. B. The HOSTS file is a text file–based database of mappings between hostnames and IP addresses. It works like a file based version of DNS. Resolves a hostname to an IP address.

18. D. Each fully qualified domain name (FQDN), such as server1.yourcompany.com, must be unique. No two machines on the same network may have the same FQDN. This requirement ensures that each machine can be uniquely identified. The WAN link only connects what is still considered one network.

19. C. Ensure that you reserve your DNS names with a registration authority. You can also reserve your private names so that they cannot be used on the public Internet. Failure to reserve your internal name may prevent internal clients from accessing this namespace on the public Internet in the future; this is simply because the client would not be able to tell the difference between the internally selected name and the publicly assigned name via the registrar. You can set up zones for both the external and internal namespaces.

20. A. In order to ensure that naming remains accurate in a distributed network environment, one DNS server must be designated as the primary master database for a specific set of addresses. It is on this server that updates to hostname-to-IP address mappings can be updated. Whenever a DNS server is unable to resolve a specific DNS name, it simply queries other servers that can provide the information.
Chapter 4

Installing and Managing Trees and Forests

MICROSOFT EXAM OBJECTIVES COVERED IN THIS CHAPTER:

✓ Configuring the Active Directory Infrastructure
 - Configure a forest or a domain. May include but is not limited to: remove a domain; perform an unattended installation; Active Directory Migration Tool (ADMT) v3 (pruning and grafting); raise forest and domain functional levels; interoperability with previous versions of Active Directory; alternate user principal name (UPN) suffix; forestprep; domainprep
 - Configure trusts. May include but is not limited to: forest trust; selective authentication vs. forest-wide authentication; transitive trust; external trust; shortcut trust; SID filtering
 - Configure the global catalog. May include but is not limited to: Universal Group Membership Caching (UGMC); partial attribute set; promote to global catalog
 - Configure operations masters. May include but is not limited to: seize and transfer; backup operations master; operations master placement; Schema Master; extending the schema; time service
So far, you have seen the steps you need to take to install the Domain Name System (DNS) and to implement the first Active Directory domain. Although we briefly introduced you to multi-domain Active Directory structures earlier, we only focused on a single domain and the objects within it.

Many businesses find that using a single domain provides an adequate solution to meet their business needs. By working with trees and forests, however, organizations can use multiple domains to better organize their environments.

This chapter begins by covering some reasons why you should create more than one Active Directory domain. Then it moves on to look at the exact processes involved in creating a domain tree and in joining multiple trees together into a domain forest. In addition, you learn how to demote a domain controller and manage multiple domains after you’ve created trees and forests.

Reasons for Creating Multiple Domains

Before you look at the steps you must take to create multiple domains, become familiar with the reasons why an organization might want to create them.

In general, you should always try to reflect your organization’s structure within a single domain. By using organizational units (OUs) and other objects, you can usually create an accurate and efficient structure within one domain. Creating and managing a single domain is usually much simpler than managing a more complex environment consisting of multiple domains.

That said, you should familiarize yourself with some real benefits and reasons for creating multiple domains as well as some drawbacks of using them.

Reasons for Using Multiple Domains

You might need to implement multiple domains for several reasons. These reasons include the following considerations:

Scalability Although Microsoft has designed Active Directory to accommodate millions of objects, this may not be practical for your current environment. Supporting thousands of users within a single domain requires more disk space, greater CPU (central processing unit) usage, and additional network burdens on your domain controllers (computers containing Active Directory security information). To determine the size of Active Directory domain your network can support, you need to plan, design, test, and analyze within your own environment.
Reducing replication traffic All the domain controllers in a domain must keep an up-to-date copy of the entire Active Directory database. For small- to medium-sized domains, this is not generally a problem. Windows Server 2008 and Active Directory manage all the details of transferring the database behind the scenes. Other business and technical limitations might, however, affect Active Directory’s ability to perform adequate replication. For example, if you have two sites that are connected by a very slow network link (or a sporadic link, or no link at all), replication is not practical. In this case, you would probably want to create separate domains to isolate replication traffic. Sporadic coverage across the wide area network (WAN) link would come from circuit switching technologies such as Integrated Services Digital Network (ISDN) technologies. If you didn’t have a link at all, then you would have a service provider outage or some other type of disruption. Separate domains mean separate replication traffic, but the amount of administrative overhead is increased significantly.

Because it’s common to have WAN links in your business environment, you will always need to consider how your users authenticate to a domain controller (DC). DCs at a remote site are commonly seen to authenticate users locally to their local area network (LAN). The most common design involves putting a DC at each remote site to keep authentication traffic from traversing the WAN. If it is the other way around, the authentication traffic may cause users problems if WAN utilization is high or if the link is broken and no other way to the central site is available. The design you are apt to see most often is one in which each server replicates its database of information to each other server so that the network and its systems converge.

However, is important to realize that the presence of slow WAN links alone is not a good reason to break an organization into multiple domains. The most common solution is to set up site links with the Site and Services Microsoft Management Console (MMC). When you use this MMC, you can manage replication traffic and fine-tune independently of the domain architecture. We’ll cover these topics in detail in Chapter 5, “Configuring Sites and Replication.”

The following are the reasons why you would want to use a multidomain architecture, such as when two companies merge through an acquisition.

Meeting business needs Several business needs might justify the creation of multiple domains. Business needs can be broken down even further into organizational and political needs.

One of the organizational reasons for using multiple domains is to avoid potential problems associated with the Domain Administrator account. At least one user needs to have permissions at this level. If your organization is unable or unwilling to trust a single person to have this level of control over all business units, then multiple domains may be the best answer. Since each domain maintains its own security database, you can keep permissions and resources isolated. Through the use of trusts, however, you can still share resources.

A political need for separate domains might arise if you had two companies that merged with two separate but equal management staffs and two sets of officers. In such a situation, you might need to have Active Directory split into two separate databases to keep the security of the two groups separate. Some such organizations may need to keep the internal groups separate by law. A multidomain architecture provides exactly this type of pristinely separate environment.
Many levels of hierarchy Larger organizations tend to have very complex internal and external business structures that dictate the need for many different levels of organization. For example, two companies might merge and need to keep two sets of officers who are managed under two different logical groupings. As you will see in Chapter 7, “Administering Active Directory,” you can use OUs to help group different branches of the company so that you can assign permissions, or delegations, or whatever else you can think of without affecting anyone else. Managing data becomes much easier when you’re using OUs, and if you design them correctly, OUs will help you control your network right from one console. You may only need one level of management—your company may be small enough to warrant the use of the default OU structure you see when Active Directory is first installed. If, however, you find that you need many levels of OUs to manage resources (or if large numbers of objects exist within each OU), it might make sense to create additional domains. Each domain would contain its own OU hierarchy and serve as the root of a new set of objects.

Decentralized administration Two main models of administration are commonly used: a centralized administration model and a decentralized administration model. In the centralized administration model, a single IT organization is responsible for managing all of the users, computers, and security permissions for the entire organization. In the decentralized administration model, each department or business unit might have its own IT department. In both cases, the needs of the administration model can play a significant role in whether you decide to use multiple domains.

Consider, for example, a multinational company that has a separate IT department for offices in each country. Each IT department is responsible for supporting only the users and computers within its own region. Since the administration model is largely decentralized, creating a separate domain for each of these major business units might make sense from a security and maintenance standpoint.

Multiple DNS or domain names Another reason you may need to use a multidomain architecture is if you want or plan to use multiple DNS names within your organization. If you use multiple DNS names or domain names, you must create multiple Active Directory domains. Each AD domain can have only one fully qualified domain name (FQDN). An FQDN is the full name of a system that consists of a local host, a second-level domain name, and a top-level domain (TLD). For example, www.wiley.com is an FQDN, .com is the TLD, www is the host, and wiley is the second-level domain name.

Legality One final reason you may need to use a multidomain architecture is legality within your organization. Some corporations have to follow state or federal regulations and laws. For this reason, they may have to have multiple domains.

Drawbacks of Multiple Domains

Although there are many reasons why it makes sense to have multiple domains, there are also reasons why you should not break an organizational structure into multiple domains, many
of which are related to maintenance and administration. Here are some of the drawbacks to using multiple domains:

Administrative inconsistency One of the fundamental responsibilities of most systems administrators is implementing and managing security. When you are implementing Group Policy and security settings in multiple domains, you want to be careful to ensure that the settings are consistent. In Windows Server 2008, security policies can be different between and within the same domains. If this is what the organization intended, then it is not a problem. If, however, an organization wishes to make the same settings apply to all users, then each domain requires similar security settings.

Increased management challenges Managing servers, users, and computers can become a considerable challenge when you are also managing multiple domains, because many more administrative units are required. In general, you need to manage all user, group, and computer settings separately for the objects within each domain. The hierarchical structure provided by OUs, on the other hand, provides a much simpler and easier way to manage permissions.

Decreased flexibility Creating a domain involves the promotion of a DC to the new domain. Although the process is quite simple, it is much more difficult to rearrange the domain topology within an Active Directory environment than it is to simply reorganize OUs. When planning domains, you should ensure that the domain structure will not change often, if at all.

Now that you have examined the pros and cons related to creating multiple domains, it is time to see how to create trees and forests.

Creating Domain Trees and Forests

So far this chapter has covered some important reasons for using multiple domains in a single network environment; now it’s time to look at how to create multidomain structures like domain trees and domain forests.

Regardless of the number of domains you have in your environment, you always have a tree and a forest. This might surprise those of you who generally think of domain trees and forests as belonging only to Active Directory environments that consist of multiple domains. However, recall that when you install the first domain in an Active Directory environment, that domain automatically creates a new forest and a new tree.

In the following sections, you will learn how to plan trees and forests as well as see how to promote domain controllers to establish a tree and forest environment.

Planning Trees and Forests

You have already seen several reasons why you might want to have multiple domains within a single company. What you haven’t yet seen is how multiple domains can be related to each other and how their relationships can translate into domain forests and trees.
A fundamental commonality between the various domains that exist in trees and forests is that they all share the same Active Directory Global Catalog (GC). This means that if you modify the Active Directory schema, these changes must be propagated to all of the domain controllers in all of the domains. This is an important point because adding and modifying the structure of information in the GC can have widespread effects on replication and network traffic. Also, you need to ensure that any system you use in the GC role can handle it—you might need to size up the system’s hardware requirements. This is especially true if there are multiple domains.

Every domain within an Active Directory configuration has its own unique name. For example, even though you might have a sales domain in two different trees, the complete names for each domain will be different (such as `sales.stellacon1.com` and `sales.stellacon2.com`).

In the following sections, you’ll look at how you can organize multiple Active Directory domains based on business requirements.

Using a Single Tree

The concept of domain trees was created to preserve the relationship between multiple domains that share a common contiguous namespace. For example, you might have the following DNS domains (based on Internet names):

- `mycompany.com`
- `sales.mycompany.com`
- `engineering.mycompany.com`
- `europe.sales.mycompany.com`

Note that all of these domains fit within a single contiguous namespace. That is, they are all direct or indirect children of the `mycompany.com` domain. In this case, `mycompany.com` is called the root domain. All of the direct children (such as `sales.mycompany.com` and `engineering.mycompany.com`) are called child domains. Finally, parent domains are the domains that are directly above one domain. For example, `sales.mycompany.com` is the parent domain of `europe.sales.mycompany.com`. Figure 4.1 provides an example of a domain tree.

In order to establish a domain tree, you must create the root domain for the tree first. Then you can add child domains off this root. These child domains can then serve as parents for further subdomains. Each domain must have at least one domain controller, and domain controllers can participate in only one domain at a time. However, you can move a domain controller from one domain to another. To do this, you must first demote a domain controller to a member server and then promote it to a domain controller in another domain.

NOTE You will learn how to demote a domain controller later in this chapter in the section titled “Demoting a Domain Controller.”
Domains are designed to be security boundaries. The domains within a tree are, by default, automatically bound together using a two-way transitive trust relationship, which allows resources to be shared among domains through the use of the appropriate user and group assignments. Because trust relationships are transitive, all of the domains within the tree trust each other. Note, however, that a trust by itself does not automatically grant any security permissions to users or objects between domains. Trusts are designed only to allow resources to be shared; you must still go through the process of sharing and managing them. Administrators must explicitly assign security settings to resources before users can access resources between domains.

Using a single tree makes sense when your organization maintains only a single contiguous namespace. Regardless of the number of domains that exist within this environment and how different their security settings are, they are related by a common name. Although domain trees make sense for many organizations, in some cases, the network namespace may be considerably more complicated. You’ll look at how forests address these situations next.
Using a Forest

Active Directory forests are designed to accommodate multiple noncontiguous namespaces. That is, they can combine domain trees together into logical units. An example might be the following tree and domain structure:

- Tree: Organization1.com
 - Sales.Organization1.com
 - Marketing.Organization1.com
 - Engineering.Organization1.com
- Tree: Organization2.com
 - Sales.Organization2.com
 - Engineering.Organization2.com

Figure 4.2 provides an example of how multiple trees can fit into a single forest. Such a situation might occur in the acquisition and merger of companies or if a company is logically divided into two or more completely separate and autonomous business units.

Figure 4.2 A single forest consisting of multiple trees
All of the trees within a forest are related through a single forest root domain. This is the first domain that was created in the Active Directory environment. The root domain in each tree creates a transitive trust with the forest root domain. The result is a configuration in which all of the trees within a domain and all of the domains within each tree trust each other. Again, as with domain trees, the presence of a trust relationship does not automatically signify that users have permissions to access resources across domains. It only allows objects and resources to be shared. Authorized network administrators must set up specific permissions.

All of the domains within a single Active Directory forest have the following features in common:

Schema The schema is the Active Directory structure that defines how the information within the data store is structured. For the information stored on various domain controllers to remain compatible, all of the domain controllers within the entire Active Directory environment must share the same schema. For example, if you add a field for an employee’s benefits plan number, all domain controllers throughout the environment need to recognize this information before you can share information among them.

Global Catalog (GC) One of the problems associated with working in large network environments is that sharing information across multiple domains can be costly in terms of network and server resources. Fortunately, Active Directory uses the GC, which serves as a repository for information about a subset of all objects within all Active Directory domains in a forest. Systems administrators can determine what types of information should be added to the defaults in the GC. Generally, they decide to store commonly used information, such as a list of all the printers, users, groups, and computers. In addition, they can configure specific domain controllers to carry a copy of the GC. Now, if you have a question about, for example, where to find all the color printers in the company, all you need to do is to contact the nearest GC server.

Configuration information Some roles and functions must be managed for the entire forest. When you are dealing with multiple domains, this means that you must configure certain domain controllers to perform functions for the entire Active Directory environment. We will discuss some specifics of this later in this chapter.

The main purpose of allowing multiple domains to exist together is to allow them to share information and other resources. Now that you’ve seen the basics of domain trees and forests, take a look at how domains are actually created.

The Promotion Process

A domain tree is created when a new domain is added as the child of an existing domain. This relationship is established during the promotion of a Windows Server 2008 computer to a domain controller. Although the underlying relationships can be quite complicated in larger organizations, the *Active Directory Installation Wizard (DCPROMO)* makes it easy to create forests and trees.
Using the Active Directory Installation Wizard, you can quickly and easily create new domains by promoting a Windows Server 2008 stand-alone server or a member server to a domain controller. When you install a new domain controller, you can choose to make it part of an existing domain, or you can choose to make it the first domain controller in a new domain. In the following sections and exercises, you’ll become familiar with the exact steps you need to take to create a domain tree and a domain forest when you promote a server to a domain controller.

Creating a Domain Tree

In the previous chapter (Chapter 3), you saw how to promote the first domain controller in the first domain in a forest, also known as the root. If you don’t promote any other domain controllers, then that domain controller simply controls that one domain and only one tree is created. To create a new domain tree, you need to promote a Windows Server 2008 computer to a domain controller. In the Active Directory Installation Wizard, you select the option that makes this domain controller the first machine in a new domain that is a child of an existing domain. As a result, you will have a domain tree that contains two domains—a parent and a child.

Before you can create a new child domain, you need the following information:

- The name of the parent domain (for the exercises, you’ll use the one you created in the previous chapter)
- The name of the child domain (the one you are planning to install)
- The filesystem locations for the Active Directory database, logs, and shared system volume
- DNS configuration information
- The NetBIOS name for the new server
- A domain administrator username and password

Exercise 4.1 walks you through the process of creating a new child domain using the Active Directory Installation Wizard. This exercise assumes that you have already created the parent domain and that you are using a server in the domain that is not a domain controller.

EXERCISE 4.1

Creating a New Subdomain

1. Log on to the computer as a member of the Administrators group and open the Active Directory Installation Wizard by clicking Start > Run, and typing `dcpromo`. After the message about installing the binaries appears, Click Next to begin the wizard.
EXERCISE 4.1 (continued)

2. The Choose A Deployment Configuration screen appears. Click Existing Forest and then click Create A New Domain In An Existing Forest. Click Next.

![Choose A Deployment Configuration screen](image)

3. A warning box may appear stating that the local administrator account becomes the domain administrator account for the new domain. If it appears, Click Yes to continue.

![Warning box](image)

4. On the Network Credentials page, specify the full name of the domain that you installed in the previous chapter. Then click the Set button. In the new Windows Security dialog box that appears, enter the username and password for the domain administrator of the domain you wish to join.

![Network Credentials](image)
5. Click the OK button on the Alternate Credentials screen. The domain administrator account that you used in the previous chapter should now be listed. A warning may appear stating that the current user credentials cannot be selected because they are local to this computer. The warning appears because our local account is the same as our domain administrator’s account. This warning will not affect the exercise. Click Next.

6. If the information you entered was correct, you will see the Name The New Domain page. Here, you will be able to confirm the name of the parent domain and then enter the domain name for the child domain. Enter the new child domain name (in the following example, we used NH for the state of New Hampshire). Click Next to continue.
7. If the Select A Site screen appears, choose any site and click Next. (You may not have any sites created on your other domain. This server will then be added to the DefaultFirstSite.)

8. On the Additional Domain Controller Options page, uncheck any options and click Next.

9. A warning box appears stating that you have chosen not to install DNS; just click Yes.
10. On the Location for Database, Log Files, and SYSVOL page, you’ll need to specify the database and log locations. These settings specify where the Active Directory database resides on the local machine. As mentioned previously, it is good practice to place the log files on a separate physical hard disk because this increases performance. Enter the path for a local directory (you can also leave the defaults for these exercises), and click Next.

11. In order to be able to recover this server in the event of a loss of Active Directory information, you will need to provide a password on the Directory Services Restore Mode Administrator Password page. This password will allow you to use the built-in recovery features of Windows Server 2008 in the event that the Active Directory database is lost or corrupted. Enter P@ssw0rd, confirm it, and then click Next.
EXERCISE 4.1 (continued)

12. On the Summary page, you will be given a brief listing of all the choices you made in the previous steps. It's a good idea to copy this information and paste it into a text document for future reference. Click Next to continue.

![Summary page of the Active Directory Domain Services Installation Wizard]

![Completing the Active Directory Domain Services Installation Wizard page]
Joining a New Domain Tree to a Forest

A forest is one or more trees that do not share a contiguous namespace. For example, you could join the organization1.com and organization2.com domains together to create a single Active Directory environment.

Any two trees can be joined together to create a forest, as long as the second tree is installed after the first and the trees have noncontiguous namespaces. (If the namespaces were contiguous, you would actually need to create a new domain for an existing tree.) The process of creating a new tree to form or add to a forest is as simple as promoting a server to a domain controller for a new domain that does not share a namespace with an existing Active Directory domain.

The command-line tool adprep.exe is used to prepare a Microsoft Windows 2003 forest or a Windows 2003 domain for the installation of Windows Server 2008 domain controllers.

Before you promote a Windows Server 2008 domain controller into a Windows 2003 forest, an administrator should successfully run `adprep /forestprep` on the schema operations master and run `adprep /domainprep` on the infrastructure master in the Windows 2003 forest. The `forestprep` and `domainprep` processes prepare the Windows 2000 or 2003 network to accept the installation of the Windows Server 2008 servers.

In Exercise 4.2, you will use the Active Directory Installation Wizard to create a new domain tree to add to a forest. In order to add a new domain to an existing forest, you must already have at least one other domain, which is the root domain. Keep in mind that the entire forest structure is destroyed if the original root domain is ever entirely removed. Therefore, you should have at least two domain controllers in the Active Directory root domain; the second serves as a backup in case you have a problem with the first, and it can also serve as a backup solution for disaster recovery and fault tolerance purposes. Such a setup provides additional protection for the entire forest in case one of the domain controllers fails. In order to complete this exercise, you must have already installed another domain controller that serves as the root domain for a forest, and you must use a server in the domain that is not a domain controller.
EXERCISE 4.2

Creating a New Domain Tree in the Forest

1. Open the Active Directory Installation Wizard by clicking Start ➤ Run, and typing `dcpromo`. Click the Use Advanced Mode Installation box. Click Next.

![Active Directory Domain Services Installation Wizard](image)

2. On the Choose a Deployment Configuration page, select Existing Forest and then click Create A New Domain In An Existing Forest. Check the box “Create a new domain tree root instead of a new child domain.” Click Next.

![Active Directory Domain Services Installation Wizard](image)
3. A warning box might appear stating that the local administrator account becomes the domain administrator account for the new domain. If it appears, Click Yes to continue.

4. On the Network Credentials page, specify the full name of the domain that you installed in the previous chapter. Click the Set button and enter the username and password for the domain administrator of a domain in the forest you wish to join. Click Next.

5. On the Name the New Domain Tree Root page, you need to specify the full name of the new domain you wish to create. Note that this domain may not share a contiguous namespace with any other existing domain. Once you have entered the appropriate information, click Next.
6. On the Domain NetBIOS Name page, you are prompted for the NetBIOS name of the domain controller. This is the name previous versions of Windows use to identify this machine. Choose a name that is up to 15 characters in length and includes only alphanumeric characters. Click Next to continue.

7. If the Select A Site screen appears, choose any site and click Next. (You may not have any sites created on your forest. This server will then be added to the DefaultFirstSite.)

8. On the Additional Domain Controller Options page, make sure DNS Server is checked and click Next.
Chapter 4 • Installing and Managing Trees and Forests

EXERCISE 4.2 (continued)

9. If a delegation for DNS message appears, click Yes.

10. The Source Domain Controller screen appears. Click the button labeled This Specific Domain Controller and highlight the domain controller that you created in Chapter 3. Click Next.

11. On the Location For Database, Log Files, And SYSVOL page, specify the database and log locations. These settings specify where the Active Directory database resides on the local machine. Click Next.
Adding Additional Domain Controllers

In addition to the operations you’ve already performed, you can use the Active Directory Installation Wizard to create additional domain controllers for any of your domains. There are two main reasons to create additional domain controllers:

Fault tolerance and reliability You should always consider the theory of disaster recovery (DR) and have a plan, sometimes referred to as a Disaster Recovery Plan (DRP). If you’re part of one of those organizations that rely upon their network directory services infrastructures, you need Active Directory to provide security and resources for all users. For this reason, downtime and data loss are very costly. Through the use of multiple domain controllers, you can ensure that if one of the servers goes down, another one is available to perform the necessary tasks, such as user authentication and resource browsing. Additionally, data loss (perhaps from hard disk drive failure) will not result in the loss or unavailability of network security information since you can easily recover Active Directory information from the remaining, still functional domain controller.
Performance The burden of processing login requests and serving as a repository for security permissions and other information can be quite extensive, especially in larger businesses. By using multiple domain controllers, you can distribute this load across multiple systems. Additionally, by strategically placing domain controllers, you can greatly increase response times for common network operations, such as authentication and browsing for resources.

As a rule of thumb, you should always plan and design your infrastructure to have at least two domain controllers per domain. For many organizations, this provides a good balance between the cost of servers and the level of reliability and performance. For larger or more distributed organizations, however, additional domain controllers greatly improve performance.

Demoting a Domain Controller

In addition to being able to promote member servers to domain controllers, the Active Directory Installation Wizard can do the exact opposite—demote domain controllers.

You might choose to demote a domain controller for a couple of reasons. First, if you have determined that the role of a server should change (for example, from a domain controller to a member or stand-alone server you might make into a web server), you can easily demote it to make this happen. Another common reason to demote a domain controller is if you wish to move the machine from one domain to another. You cannot do this in a single step: You need to first demote the existing domain controller to remove it from the current domain, then promote it into a new domain. The end result is that the server is now a domain controller for a different domain.

Real World Scenario

Planning for Domain Controller Placement

You’re the Senior Systems Administrator for a medium-sized Active Directory environment. Currently, the environment consists of only one Active Directory domain. Your company’s network is spread out through 40 different sites within North America. Recently, you’ve received complaints from users and other system administrators about the performance of Active Directory–related operations. For example, users report that it takes several minutes to log on to their machines in the morning between the hours of 9 and 10am when activity is at its highest. Simultaneously, systems administrators complain that updating user information within the OUs for which they are responsible can take longer than expected.

One network administrator, who has a strong Windows NT 4 domain background but little knowledge of Active Directory design, suggests that you create multiple domains to solve some of the performance problems. However, you know that this would significantly change the environment and could make administration more difficult. Furthermore, the company’s business goals involve keeping all company resources as unified as possible.
To demote a domain controller, you simply access the Active Directory Installation Wizard. The wizard automatically notices that the local server is a domain controller, and it asks you to verify each step you take, as with most things you do in Windows. You are prompted to decide whether you really want to remove this machine from the current domain (see Figure 4.3). Note that if the local server is a Global Catalog (GC) server, you will be warned that at least one copy of the GC must remain available so that you can perform logon authentication.

To demote a domain controller, you simply access the Active Directory Installation Wizard. The wizard automatically notices that the local server is a domain controller, and it asks you to verify each step you take, as with most things you do in Windows. You are prompted to decide whether you really want to remove this machine from the current domain (see Figure 4.3). Note that if the local server is a Global Catalog (GC) server, you will be warned that at least one copy of the GC must remain available so that you can perform logon authentication.
Chapter 4 • Installing and Managing Trees and Forests

Real World Scenario

Removing the Last Domain Controller in a Domain

In order for a domain to continue to exist, at least one domain controller must remain in that domain. As noted in the dialog box in Figure 4.3, you must take some very important considerations into account if you are removing the last domain controller from the domain. Because all of the security accounts and information will be lost, you should ensure that the following requirements are met before you remove a domain’s last domain controller:

Computers no longer log on to this domain. Ensure that computers that were once members of this domain have changed domains. If computers are still attempting to log on, they will not be able to use any of the security features, including any security permissions or logon accounts. Users will, however, still be able to log on to the computer using cached authenticated information.

No user accounts are needed. All of the user accounts that reside within the domain (and all of the resources and permissions associated with them) will be lost when the domain is destroyed. Therefore, if you have already set up usernames and passwords, you need to transfer these accounts to another domain; otherwise, you will lose all of this information.

All encrypted data is decrypted. You need the security information (including User, Computer, and Group objects) stored within the Active Directory domain database to access any encrypted information. Once the domain no longer exists, the security information stored within it will no longer be available, and any encrypted information stored in the filesystem will become permanently inaccessible. So, you need to decrypt any encrypted data before you begin the demotion process so that you can make sure you can access this information afterward. For example, if you have encrypted files or folders that reside on NTFS volumes, you should decrypt them before you continue with the demotion process.

All cryptographic keys are backed up. If you are using cryptographic keys to authenticate and secure data, you should export the key information before you demote the last domain controller in a domain. Because this information is stored in the Active Directory database, any resources locked with these keys become inaccessible once the database is lost as a result of the demotion process.

By now, you’ve probably noticed a running theme—a lot of information disappears when you demote the last domain controller in a domain. The Active Directory Installation Wizard makes performing potentially disastrous decisions very easy. Be sure that you understand these effects before you demote the last domain controller for a given domain.
By default, at the end of the demotion process, the server is joined as a member server to the domain for which it was previously a domain controller. If you demote the last domain controller in the domain, the server becomes a standalone.

Removing a domain from your environment is not an operation that you should take lightly. Before you plan to remove a domain, make a list of all the resources that depend on the domain and the reasons why the domain was originally created. If you are sure your organization no longer requires the domain, then you can safely continue. If you are not sure, think again, because the process cannot be reversed and you could lose critical information!

Managing Multiple Domains

You can easily manage most of the operations that must occur between domains by using the Active Directory Domains And Trusts administrative tool. If, on the other hand, you want to configure settings within a domain, you should use the Active Directory Users And Computers tool. In the following sections, you’ll look at ways to perform two common domain management functions with the tools just mentioned: managing single master operations and managing trusts. We’ll also look at ways to manage UPN suffixes to simplify user accounts, and we’ll examine GC servers in more detail.

Managing Single Master Operations

For the most part, Active Directory functions in what is known as multimaster replication. That is, every domain controller within the environment contains a copy of the Active Directory database that is both readable and writable. This works well for most types of information. For example, if you want to modify the password of a user, you can easily do this on any of the domain controllers within a domain. The change is then automatically propagated to the other domain controllers.

However, some functions are not managed in a multimaster fashion. These operations are known as operations masters. You must perform single-master operations on specially designated domain controllers within the Active Directory forest. There are five main single-master functions: two that apply to an entire Active Directory forest and three that apply to each domain.

Forest Operations Masters

You use the Active Directory Domains And Trusts tool to configure forest-wide roles. The following single-master operations apply to the entire forest:

Schema Master Earlier, you learned that all of the domain controllers within a single Active Directory environment share the same schema. This ensures information consistency. Developers
and systems administrators can, however, modify the Active Directory schema by adding custom information. A trivial example might involve adding a field to employee information that specifies a user’s favorite color.

When you need to make these types of changes, you must perform them on the domain controller that serves as the Schema Master for the environment. The Schema Master is then responsible for propagating all of the changes to all of the other domain controllers within the forest.

Domain Naming Master The purpose of the Domain Naming Master is to keep track of all the domains within an Active Directory forest. You access this domain controller whenever you need to add new domains to a tree or forest.

Domain Operations Masters

You use the Active Directory Users And Computers snap-in to administer roles within a domain. Within each domain, at least one domain controller must fulfill each of the following roles:

Relative ID (RID) Master Every object within Active Directory must be assigned a unique identifier so that it is distinguishable from other objects. For example, if you have two OUs named IT that reside in different domains, you must have some way to easily distinguish between them. Furthermore, if you delete one of the IT OUs and then later re-create it, the system must be able to determine that it is not the same object as the other IT OU. The unique identifier for each object is made up of a domain identifier and a relative identifier (RID). RIDs are always unique within an Active Directory domain and are used for managing security information and authenticating users. The RID Master is responsible for creating these values within a domain whenever new Active Directory objects are created.

PDC Emulator Master Within a domain, the PDC Emulator Master is responsible for maintaining backward compatibility with Windows NT domain controllers. When running in mixed-mode domains, the PDC Emulator is able to process authentication requests and serve as a primary domain controller (PDC) with Windows NT backup domain controllers (BDCs).

When running in Windows 2000 Native, Windows 2003, or Windows 2008 domain functional level (which does not support the use of pre–Windows 2000 domain controllers), the PDC Emulator Master serves as the default domain controller to process authentication requests if another domain controller is unable to do so. The PDC Emulator also receives preferential treatment whenever domain security changes are made.

Infrastructure Master Whenever a user is added to or removed from a group, all of the other domain controllers should be made aware of this change. The role of the domain controller that acts as an Infrastructure Master is to ensure that group membership information stays synchronized within an Active Directory domain.

Another service that a server can control for the network is the Windows Time service. The Windows Time service uses a suite of algorithms in the Network Time Protocol (NTP). This helps to ensure that the time on all computers throughout a network are as accurate as possible. All client computers within a Windows Server 2008 domain are synchronized with the time of an authoritative computer.
Managing Multiple Domains

Assigning Single-Master Roles

Now that you are familiar with the different types of single-master operations, take a look at Exercise 4.3. This exercise shows you how to assign these roles to servers within the Active Directory environment. In this exercise, you will assign single-master operations roles to various domain controllers within the environment. In order to complete the steps in this exercise, you need one Active Directory domain controller.

Troubleshooting Operations Masters

If a server with an operations master role stops working, you need to take specific actions to solve the problem.

For example, let’s say the Windows Server 2008 server that holds the PDC Emulator role has a hard drive failure. To resolve this, you must seize control of the PDC Emulator. Seizing control of an operation master role means that you are manually turning that role over to another server. You cannot go into Active Directory and transfer the role (as shown in Exercise 4.3). Since the server that holds the role is not working, you must use the ntdsutil utility to manually transfer (seize control of) the role.

EXERCISE 4.3
Assigning Single-Master Operations

1. Open the Active Directory Domains And Trusts administrative tool by clicking Start ➤ Administrative Tools ➤ Active Directory Domains And Trusts.

2. Right-click Active Directory Domains And Trusts, and choose Operations Master.

3. In the Operations Master dialog box, note that you can change the operations master by clicking the Change button. If you want to move this assignment to another computer, you first need to connect to that computer and then make the change. Click Close to continue without making any changes.
174 Chapter 4 • Installing and Managing Trees and Forests

EXERCISE 4.3 (continued)

5. Open the Active Directory Users And Computers administrative tool.
6. Right-click the name of a domain and select Operations Masters. This brings up the RID tab of the Operations Master dialog box.

![Operations Master dialog box](image)

Notice that you can change the computer that is assigned to the role. In order to change the role, you first need to connect to the appropriate domain controller. Notice that the PDC and Infrastructure roles have similar tabs. Click Close to continue without making any changes.

7. When you are finished, close the Active Directory Users And Computers tool.

Remember that you manage single-master operations with three different tools. You use the Active Directory Domains And Trusts tool to configure forest-wide roles, while you use the Active Directory Users And Computers snap-in to administer roles within a domain. Although this might not seem intuitive at first, it can help you remember which roles apply to domains and which apply to the whole forest. The third tool, the Schema Master role, is a bit different than these other two. To change the Schema Master role, you must install the Active Directory Schema MMS snap-in and change it there.
Managing Trusts

Trust relationships make it easier to share security information and network resources between domains. As was already mentioned, standard transitive two-way trusts are automatically created between the domains in a tree and between each of the trees in a forest. Figure 4.4 shows an example of the default trust relationships in an Active Directory forest.

FIGURE 4.4 Default trusts in an Active Directory forest

When configuring trusts, here are two main characteristics you need to consider:

Transitive trusts By default, Active Directory trusts are *transitive trusts*. The simplest way to understand transitive relationships is through an example like the following: If Domain A trusts Domain B and Domain B trusts Domain C, then Domain A implicitly trusts Domain C. If you need to apply a tighter level of security, trusts can be configured as intransitive.

One-way vs. two-way Trusts can be configured as one-way or two-way relationships. The default operation is to create *two-way trusts* or *bidirectional trusts*. This makes it easier to manage trust relationships by reducing the trusts you must create. In some cases, however, you might decide against two-way trusts. In one-way relationships, the trusting domain allows resources to be shared with the trusted domain, but not the other way around.
When domains are added together to form trees and forests, an automatic transitive two-way trust is created between them. Although the default trust relationships work well for most organizations, there are some reasons why you might want to manage trusts manually:

- You may want to remove trusts between domains if you are absolutely sure that you do not want resources to be shared between domains.
- Because of security concerns, you may need to keep resources isolated.

In addition to the default trust types, you can also configure the following types of special trusts:

External trusts You use external trusts to provide access to resources on a Windows NT 4 domain or forest that cannot use a forest trust. Windows NT 4 domains cannot benefit from the other trust types that are used in Windows Server 2008, so in some cases, external trusts could be your only option. External trusts are always nontransitive, but they can be established in a one-way or two-way configuration.

Default SID filtering on external trusts When you set up an external trust, remember that it is possible for hackers to compromise a domain controller in a trusted domain. If this trust is compromised, a hacker can use the security identifier (SID) history attribute to associate SIDs with new user accounts, granting themselves unauthorized rights (this is called an elevation-of-privileges attack). To help prevent this type of attack, Windows Server 2008 automatically enables SID filter quarantining on all external trusts. SID filtering allows the domain controllers in the trusting domain (the domain with the resources) to remove all SID history attributes that are not members of the trusted domain.

Realm trusts Realm trusts are similar to external trusts. You use them to connect to a non-Windows domain that uses Kerberos authentication. Realm trusts can be transitive or nontransitive, one-way or two-way.

Cross-forest trusts Cross-forest trusts are used to share resources between forests. They have been used since Windows Server 2000 domains and cannot be intransitive, but you can establish them in a one-way or a two-way configuration. Authentication requests in either forest can reach the other forest in a two-way cross-forest trust.

Selective authentication vs. forest-wide authentication Forest-wide authentication on a forest trust means that users of the trusted forest can access all the resources of the trusting forest. Selective authentication means that users cannot authenticate to a domain controller or resource server in the trusting forest unless they are explicitly allowed to do so. Exercise 4.4 will show you the steps to change forest-wide authentication to selective authentication.

Shortcut trusts In some cases, you may actually want to create direct trusts between two domains that implicitly trust each other. Such a trust is sometimes referred to as a shortcut trust and can improve the speed at which resources are accessed across many different domains.
Perhaps the most important aspect to remember regarding trusts is that creating them only allows you to share resources between domains. The trust does not grant any permissions between domains by itself. Once a trust has been established, however, systems administrators can easily assign the necessary permissions.

Exercise 4.4 walks you through the steps you need to take to manage trusts. In this exercise, you will see how to assign trust relationships between domains. In order to complete the steps in this exercise, you must have domain administrator access permissions.

EXERCISE 4.4

Managing Trust Relationships

1. Open the Active Directory Domains And Trusts administrative tool by clicking Start ➤ Administrative Tools ➤ Active Directory Domains And Trusts.

2. Right-click the name of a domain and select Properties.

3. Select the Trusts tab. You will see a list of the trusts that are currently configured. To modify the trust properties for an existing trust, highlight that trust and click Properties.
Chapter 4 • Installing and Managing Trees and Forests

EXERCISE 4.4 (continued)

4. The Properties window for the trust displays information about the trust’s direction, transitivity, and type, along with the names of the domains involved in the relationship. Click Cancel to exit without making any changes.

5. To create a new trust relationship, click the New Trust button on the Trusts tab. The New Trust Wizard appears. Click Next to proceed with the wizard.

6. On the Trust Name page, you are prompted for the name of the domain with which the trust should be created. Enter the name of the domain and click Next.
7. On the Trust Type page, you would normally choose the Trust With A Windows Domain option if you know that the other domain uses a Windows domain controller. In order to continue with this exercise (without requiring access to another domain), it is important to choose the Realm Trust option. This selection allows you to walk through the process of creating a trust relationship without needing an untrusted domain in the Active Directory environment. Click Next when you are done.

8. On the Transitivity Of Trust page, you choose whether the trust is transitive or intransitive. Choose the Nontransitive option and click Next to continue.
Chapter 4 • Installing and Managing Trees and Forests

EXERCISE 4.4 (continued)

9. On the Direction Of Trust page, you select the direction of the trust. If you want both domains to trust each other, you select the two-way option. Otherwise you select either One-Way: Incoming or One-Way: Outgoing, depending on where the affected users are located. For the sake of this exercise, choose One-Way: Incoming and then click Next.

10. On the Trust Password page, you need to specify a password that should be used to administer the trust. Type P@ssw0rd and confirm it. Note that if there is an existing trust relationship between the domains, the passwords must match. Click Next to continue.
Managing Multiple Domains

EXERCISE 4.4 (continued)

11. Now you see the Trust Selections Complete page that recaps the selections you have made. Because this is an exercise, you don’t actually want to establish this trust. Click Cancel to cancel the wizard without saving the changes.

12. Exit the trust properties for the domain by clicking Cancel.

To Enable Selective Authentication

1. In the console tree, right-click the name of a domain and select Properties.

2. Select the Trusts tab. Under either Domains Trusted By This Domain (Outgoing Trusts) or Domains That Trust This Domain (Incoming Trusts), click the forest trust that you want to administer, and then click Properties.

3. On the Authentication tab, click Selective Authentication, and then click OK.

Managing UPN Suffixes

User principal name (UPN) suffixes are the part of a user’s name that appears after the @ symbol. So, for instance, the UPN suffix of wpanek@stellacon.com would be stellacon.com. By default, the UPN suffix is determined by the name of the domain in which the user is created. In this example, the user wpanek was created in the domain stellacon.com, so the two pieces of the UPN logically fit together. However, you might find it useful to provide an alternative UPN suffix to consolidate the UPNs forest-wide.

For instance, if you manage a forest that consists of stellacon.com and stellacon2.com, you might want all of your users to adopt the more generally applicable stellacon.com UPN.
suffix. By adding additional UPN suffixes to the forest, you can easily choose the appropriate suffix when it comes time to create new users. Exercise 4.5 shows you how to add additional suffixes to a forest.

EXERCISE 4.5

Adding a UPN Suffix

1. Open the Active Directory Domains And Trusts administrative tool by clicking Start ➤ Administrative Tools ➤ Active Directory Domains And Trusts.

2. Right-click Active Directory Domains And Trusts in the left side of the window and select Properties.

3. On the UPN Suffixes tab of the Active Directory Domains And Trusts Properties dialog box, enter an alternate UPN suffix in the Alternate UPN Suffixes field. Click the Add button to add the suffix to the list.

4. To remove a UPN suffix, select its name in the list and click the Remove button.

Managing Global Catalog Servers

One of the best features of a distributed directory service like Active Directory is that you can store different pieces of information in different places within an organization. For example, a domain in Japan might store a list of users who operate within a company’s Asian operations
business unit, while one in New York would contain a list of users who operate within its North American operations business unit. This architecture allows systems administrators to place the most frequently accessed information on domain controllers in different domains, thereby reducing disk space requirements and replication traffic.

However, you may encounter a problem when you deal with information that is segmented into multiple domains. The issue involves querying information stored within Active Directory. What would happen, for example, if a user wanted a list of all of the printers available in all domains within the Active Directory forest? In this case, the search would normally require information from at least one domain controller in each of the domains within the environment. Some of these domain controllers may be located across slow WAN links or may have unreliable connections. The end result would include an extremely long wait while retrieving the results of the query, that is, if any results came up without timing out.

Fortunately, Active Directory has a mechanism that speeds up such searches. You can configure any number of domain controllers to host a copy of the GC. The GC contains all of the schema information and a subset of the attributes for all domains within the Active Directory environment. Although a default set of information is normally included with the GC, systems administrators can choose to add additional information to this data store if it is needed. To help reduce replication traffic and to keep the GC’s database small, only a limited subset of each object’s attributes are replicated. This is called the partial attribute set (PAS). You can change the PAS by modifying the schema and marking attributes for replication to the GC.

Servers that contain a copy of the GC are known as GC servers. Now, whenever a user executes a query that requires information from multiple domains, they need only contact the nearest GC server for this information. Similarly, when users must authenticate across domains, they do not have to wait for a response from a domain controller that may be located across the world. The end result is that the overall performance of Active Directory queries increases.

Exercise 4.6 walks you through the steps you need to take to configure a domain controller as a GC server. Generally, GC servers are only useful in environments that use multiple Active Directory domains.

Exercise 4.6

Managing GC Servers

1. Open the Active Directory Sites And Services administrative tool by clicking Start ➢ Administrative Tools ➢ Active Directory Sites And Services.

2. Find the name of the local domain controller within the list of objects (typically under Default First Site Name ➢ Servers), and expand this object. Right-click NTDS Settings and select Properties.
Installing and Managing Trees and Forests

Managing Universal Group Membership Caching

Many networks run into problems due to available network bandwidth and server hardware limitations. For this reason, it may not be wise to install a GC in smaller branch offices. Windows Server 2008 can help these smaller sites by deploying domain controllers that use universal group membership caching.

Once enabled, universal group membership caching stores information locally once a user attempts to log on for the first time. With the use of a GC, the domain controller retains the universal group membership for that logged on user.

The next time that user attempts to log on, the authenticating domain controller running Windows Server 2008 will obtain the universal group membership information from its local cache without the need to contact a GC. The universal group membership information is retained, by default, on the domain controller for 8 hours.

EXERCISE 4.6 (continued)

3. In the NTDS Settings Properties dialog box, type **Primary GC Server for Domain** in the Description field. Note that there is a checkbox that determines whether this computer contains a copy of the Global Catalog. If the box is checked, then this domain controller contains a subset of information from all other domains within the Active Directory environment. Select the Global Catalog checkbox, and then click OK to continue.

4. When you are finished, close the Active Directory Sites And Services administrative tool.
Some of the advantages of using universal group membership caching are as follows:

Faster logon times Since the domain controller does not need to contact a global catalog, logon authentication is faster.

Reduced network bandwidth The domain controller does not have to handle object replication for all the objects located in the forest.

Ability to use existing hardware. There is no need to upgrade hardware to support a GC.

Exercise 4.7 shows you the steps that you need to take to configure universal group membership caching.

EXERCISE 4.7

Managing Universal Group Membership Caching

1. Open the Active Directory Sites And Services administrative tool by clicking Start ➤ Administrative Tools ➤ Active Directory Sites And Services.

2. Click Sites, then Click DefaultFirstSite. In the right pane, right-click NTDS Settings and choose Properties.

3. In the NTDS Site Settings Properties dialog box, check the box labeled Enable Universal Group Membership Caching and then click OK to continue.

4. When you are finished, close the Active Directory Sites And Services administrative tool.
Summary

In this chapter, we covered the basics of linking multiple domains in trees and forests. You now know why you would want to plan for them and what the benefits and drawbacks are of using only one domain, or of having a multidomain environment. For example, you might decide to have multiple domains if you have an acquisitions and mergers situation where you need to keep multiple administrators. In addition, by using multiple domains, organizations can retain separate security databases; however, in such cases, they are also able to share resources between domains.

You also learned how to use multiple domains to provide two major benefits for the network directory services—security and availability. These benefits are made possible through Active Directory and the administrative tools that can be used to access it.

In addition, we covered how system administrators can simplify operations while still ensuring that only authorized users have access to their data, how multiple domains can interact to form Active Directory trees and forests, and how you can use the Active Directory Installation Wizard to create new Active Directory trees and forests.

Exam Essentials

Understand the reasons for using multiple domains. There are seven primary reasons for using multiple domains: they provide additional scalability, they reduce replication traffic, they help with political and organizational issues, they provide many levels of hierarchy, they allow for decentralized administration, legality, and they allow for multiple DNS or domain names.

Understand the drawbacks of using multiple domains. With multiple domains, maintaining administrative consistency is more difficult. The number of administrative units multiplies as well, which makes it difficult to keep track of network resources. Finally, it is much more difficult to rearrange the domain topology within an Active Directory environment than it is to simply reorganize OUs.

Know how to create a domain tree. To create a new domain tree, you need to promote a Windows Server 2008 computer to a domain controller, select the option that makes this domain controller the first machine in a new domain, and make that domain the first domain of a new tree. The result is a new domain tree.

Know how to join a domain tree to a forest. Creating a new tree to form or add to a forest is as simple as promoting a server to a domain controller for a new domain that does not share a namespace with an existing Active Directory domain. In order to add a domain to an existing forest, you must already have at least one other domain. This domain serves as the root domain for the entire forest.
Understand how to manage single-master operations. Single-master operations must be performed on specially designated machines within the Active Directory forest. There are five main single-master functions: two that apply to an entire Active Directory forest (Schema Master and Domain Naming Master) and three that apply to each domain (RID Master, PDC Emulator Master, and Infrastructure Master).

Understand how to manage trusts. When configuring trusts, you’ll need to consider two main characteristics: transitivity and direction. The simplest way to understand transitive relationships is through an example like the following: If Domain A trusts Domain B and Domain B trusts Domain C, then Domain A implicitly trusts Domain C. Trusts can be configured as intransitive so that this type of behavior does not occur. In one-way relationships, the trusting domain allows resources to be shared with the trusted domain. In two-way relationships, both domains trust each other equally. Special trusts include external trusts, realm trusts, cross-forest trusts, and shortcut trusts.

Understand how to manage UPN suffixes. By default, the name of the domain in which the user is created determines the UPN suffix. By adding additional UPN suffixes to the forest, you can easily choose more manageable suffixes when it comes time to create new users.

Understand how to manage Global Catalog (GC) servers. You can configure any number of domain controllers to host a copy of the GC. The GC contains all of the schema information and a subset of the attributes for all domains within the Active Directory environment. Servers that contain a copy of the GC are known as GC servers. Whenever a user executes a query that requires information from multiple domains, they need only contact the nearest GC server for this information. Similarly, when users must authenticate across domains, they will not have to wait for a response from a domain controller that may be located across the world. The end result is increased overall performance of Active Directory queries.

Understanding Universal Group Membership Caching. You can enable a domain controller as a universal group membership caching server. The universal group membership caching machine will then send a request for the logon authentication of a user to the GC server. The GC will then send the information back to the universal group membership caching server to be cached locally for 8 hours (by default). The user can then authenticate without the need to contact the GC again.
Review Questions

1. You are a systems administrator for an environment that consists of two Active Directory domains. Initially, the domains were configured without any trust relationships. However, the business now needs to share resources between domains. You decide to create a trust relationship between Domain A and Domain B. Before you take any other actions, which of the following statements is true? Choose all that apply.
 A. All users in Domain A can access all resources in Domain B.
 B. All users in Domain B can access all resources in Domain A.
 C. Resources cannot be shared between the domains.
 D. Users in Domain A do not have permission to access resources in Domain B.
 E. Users in Domain B do not have permission to access resources in Domain A.

2. Jane is a systems administrator for a large Active Directory environment that plans to deploy four Active Directory domains. She is responsible for determining the hardware budget she needs to deploy the four domains. She has the following requirements:
 - The budget should minimize the number of servers to be deployed initially.
 - Each domain must implement enough fault tolerance to survive the complete failure of one domain controller.
 - If one domain controller fails, users in all domains should still have access to Active Directory information.

 In order to meet these requirements, what is the minimum number of domain controllers Jane can deploy initially?
 A. 0
 B. 1
 C. 2
 D. 4
 E. 8

3. Juan is a network administrator for three Active Directory domains that support offices based primarily in South America. His organization has recently decided to open several offices in North America and Asia, and many of the employees will be relocated to staff these offices. As part of the change, several offices in South America will either be closed or reduced in size.
Currently, the environment consists of many Windows Server 2008 computers in different configurations. In order to conserve hardware resources, Juan plans to reassign some of the servers located in South America to support operations in North America and Asia, which will include the creation of new domains. Which of the following server configurations can be directly promoted to become a domain controller for a new domain? Choose all that apply.

A. Member server
B. Stand-alone server
C. Domain controller
D. Secondary domain controller

4. Monica is the systems administrator for a mixed-domain environment that consists of Active Directory domain controllers and Windows NT 4 domain controllers. The server roles are as follows:

 Server1: Schema Master
 Server2: RID Master
 Server3: Windows NT 4 BDC
 Server4: Infrastructure Master
 Server5: PDC Emulator Master

When the business finishes migrating the entire environment to Windows Server 2008, which of the following machines will no longer be required?

A. Server1
B. Server2
C. Server3
D. Server4
E. Server5

5. Implicit trusts created between domains are known as which of the following?

A. Two-way trusts
B. Transitive trusts
C. One-way trusts
D. Intransitive trusts
6. You are a developer for a small organization that has deployed a single Active Directory domain. Your organization has begun using the Active Directory schema in order to store important information related to each of the company’s 350 employees. Most of the fields of information you plan to support are already included with the basic Active Directory schema. However, one field—a “security clearance level” value—is not supported. You want to take advantage of the extensibility of Active Directory by adding this field to the properties of a User object. On which of the following servers can the change be made?

A. Any domain controller
B. Any member server
C. The Schema Master
D. The Global Catalog

7. What are several Active Directory domains that share a contiguous namespace called?

A. A forest
B. A domain hierarchy
C. A tree
D. A DNS zone

8. A junior systems administrator who was responsible for administering an Active Directory domain accidentally demoted the last domain controller of your ADTest.com domain. He noticed that after the demotion process was complete, that none of the machines on the network could perform any Active Directory–related operations. He calls you to ask for advice about re-creating the domain. Your solution must meet the following requirements:

- No Active Directory security information can be lost.
- All objects must be restored.
- The process must not require the use of Active Directory or server backups because they were not being performed for the ADTest.com domain.

After the last domain controller in a domain has been demoted, how can the domain be re-created to meet these requirements?

A. By creating a new domain controller with the same name as the demoted one.
B. By creating a new domain with the same name.
C. By adding a new member server to the old domain.
D. None of the above solutions meets the requirements.
9. Which of the following item(s) does not depend on the DNS namespace? (Choose all that apply.)
 A. Organizational units (OUs)
 B. Domains
 C. Domain trees
 D. Domain forests
 E. DNS zones
 F. Active Directory sites

10. Which of the following types of computers contain a copy of the Global Catalog (GC)?
 A. All Windows NT domain controllers
 B. All Active Directory domain controllers
 C. Specified Active Directory domain controllers
 D. Active Directory workstations

11. Which of the following pieces of information should you have before you use the Active Directory Installation Wizard to install a new subdomain? Choose all that apply.
 A. The name of the child domain
 B. The name of the parent domain
 C. DNS configuration information
 D. NetBIOS name for the server

12. Which type of trust is automatically created between the domains in a domain tree?
 A. Transitive
 B. Two-way
 C. Transitive two-way
 D. Intransitive two-way

13. The Active Directory Installation Wizard can be accessed by typing which of the following commands?
 A. domaininstall
 B. domainupgrade
 C. dconfig
 D. dcinstall
 E. dcpromo
14. A systems administrator wants to remove a domain controller from a domain. Which of the following is the easiest way to perform the task?
 A. Use the Active Directory Installation Wizard to demote the domain controller.
 B. Use the `dcpromo /remove` command.
 C. Reinstall the server over the existing installation and make the machine a member of a workgroup.
 D. Reinstall the server over the existing installation and make the machine a member of a domain.

15. Which of the following is true regarding the sharing of resources between forests?
 A. All resources are automatically shared between forests.
 B. A trust relationship must exist before resources can be shared between forests.
 C. Resources cannot be shared between forests.
 D. A transitive trust relationship must exist before resources can be shared between forests.

16. You are a network administrator for your organization. Your company needs to implement a new remote location. Even though the company has a very slow WAN connection between sites, the new location must adhere to the following specs:
 - Fast logon times
 - Reduced network bandwidth
 - Ability to use existing hardware

 What can you implement to achieve the above requirements?
 A. Global Catalog
 B. Universal group membership caching
 C. DNS Active Directory Integrated zone
 D. DNS Secondary zone

17. You are the network administrator for your company’s infrastructure. You need to merge a company into your current domain and forest. The new company’s domain is going to be created as a new domain that is added to your company’s root name. From the following selections, what is the best way to accomplish this task?
 A. Join the new domain to a new forest.
 B. Join the new domain to a current one.
 C. Create a new FQDN and use a secondary zone.
 D. Allow for a canonical name record to translate to the new domain.
18. As the systems engineer installing the new Active Directory domain, you need to consider where you will have your five main single-master functions. Of the five main single master functions, two apply to an entire Active Directory forest. What are the three that apply to just the domain? Choose all that apply.

A. Domain Naming Master
B. RID Master
C. PDC Emulator Master
D. Infrastructure Master

19. When deploying Active Directory, you decide to create a new domain tree. What do you need to do to create this?

A. Demote a Windows Server 2008 computer to a member server and select the option that makes this a tree master for the new domain.
B. Use a Windows Server 2008 computer as a domain naming master and select the Tree Master option. This will force the selection.
C. Use a system as a member server, promote it to a domain controller, and then select Use As Tree Master when prompted.
D. Promote a Windows Server 2008 computer to a domain controller and select the option that makes this domain controller the first machine in a new domain that is a child of an existing one.

20. You are the network administrator for your company and are responsible for the current Active Directory layout. You are purchasing a new company soon and need to connect the two seamlessly. You need to make sure there is no more administrative overhead than absolutely necessary. You currently have two forests and two domains. You need to reduce administrative costs and the overhead and streamline Active Directory deployment. What is the best solution to this problem?

A. Use multiple domains. Ensure that you are using the Active Directory Connector and make sure you set up QoS (quality of service) on the Active Directory Connector.
B. Install a new domain controller and use it to offload processes.
C. Do not use multiple domains. They increase overhead and shouldn’t be used unless absolutely necessary. Redesign your network to fall under one domain and one forest, then plan and cutover accordingly.
D. Make sure that you use a third-party load balancer to speed up Active Directory convergence.
Answers to Review Questions

1. D, E. A trust relationship only allows for the possibility of sharing resources between domains; it does not explicitly provide any permissions. In order to allow users to access resources in another domain, you must configure the appropriate permissions.

2. E. Every domain must have at least one domain controller; therefore, Jane needs at least four domain controllers in order to create the domains. Furthermore, to meet the requirements for fault tolerance and the ability to continue operations during the failure of a domain controller, each of the four domains must also have a second domain controller. Therefore, Jane must deploy a minimum of eight servers configured as Active Directory domain controllers.

3. A, B. Both member servers and stand-alone servers can be promoted to domain controllers for new Active Directory domains. In order to “move” an existing domain controller to a new domain, Juan must first demote the domain controller. He can then promote it to a domain controller for a new domain. Secondary domain controllers do not exist in Active Directory.

4. C. The Windows NT backup domain controller (BDC) will no longer be necessary once the environment moves to a Windows Server 2008 platform (although it may be upgraded to a Windows Server 2008 domain controller). The PDC Emulator Master is used primarily for compatibility with Windows NT domains; however, it will still be required for certain domain-wide functions in a Windows Server 2008 environment.

5. B. Trusts between domains that have not been explicitly defined are known as transitive trusts. Transitive trusts can be either one-way or two-way.

6. C. The Schema Master is the only server within Active Directory on which changes to the schema can be made.

7. C. A domain tree is made up of one or more domains that share the same contiguous namespace.

8. D. Once the last domain controller in an environment has been removed, there is no way to recreate the same domain. If adequate backups had been performed, you may have been able to recover information by rebuilding the server.

9. A, F. OUs do not participate in the DNS namespace—they are used primarily for naming objects within an Active Directory domain. The naming for Active Directory objects, such as sites, does not depend on DNS names either.

10. C. Systems administrators can define which domain controllers in the environment contain a copy of the GC. Although the GC does contain information about all domains in the environment, it does not have to reside on all domain controllers.

11. A, B, C, D. Before beginning the promotion of a domain controller, you should have all of the information listed. You must specify all of these pieces of information in the Active Directory Installation Wizard.

12. C. A transitive two-way trust is automatically created between the domains in a domain tree.

13. E. The dcpromo command can be used to launch the Active Directory Installation Wizard. None of the other commands are valid in Windows Server 2008.
14. A. The Active Directory Installation Wizard allows administrators to remove a domain controller from a domain quickly and easily without requiring them to reinstall the operating system.

15. B. When you create trust relationships, resources can be shared between domains that are in two different forests. To simplify access to resources (at the expense of security), a systems administrator could enable the Guest account in the domains so that resources would be automatically shared for members of the Everyone group.

16. B. Universal group membership caching stores information locally once a user attempts to log on for the first time. With the use of a Global Catalog, the domain controller retains the universal group membership for that logged on user. The next time that user attempts to log on, the authenticating domain controller running Windows Server 2008 will obtain the universal group membership information from its local cache without the need to contact a Global Catalog.

17. B. Creating a new tree to form or add to a forest is as simple as promoting a server to a domain controller for a new domain that does not share a namespace with an existing Active Directory domain. In order to add a new domain to an existing forest, you must already have at least one other domain. This domain serves as the root domain for the entire forest.

18. B, C, D. Single-master operations must be performed on specially designated machines within the Active Directory forest. The five main single-master functions are the following: two that apply to an entire Active Directory forest (Schema Master and Domain Naming Master) and three that apply to each domain (RID Master, PDC Emulator Master, and Infrastructure Master).

19. D. To create a new domain tree, you need to promote a Windows Server 2008 computer to a domain controller and select the option that makes this domain controller the first machine in a new domain. The result is a new domain tree.

20. C. With multiple domains, maintaining administrative consistency is more difficult. The number of administrative units multiplies as well, which makes it difficult to keep track of network resources.
Chapter 5

Configuring Sites and Replication

MICROSOFT EXAM OBJECTIVES COVERED IN THIS CHAPTER:

✓ Configuring the Active Directory Infrastructure
 ▪ Configure sites. May include but is not limited to: create Active Directory subnets; configure site links; configure site link costing; configure sites infrastructure
 ▪ Configure Active Directory replication. May include but is not limited to: Distributed File System; one-way replication; Bridgehead server; replication scheduling; configure replication protocols; force intersite replication
Overview of Network Planning

Before discussing sites and replication, you need to understand some basic physical and network concepts.

The Three Types of Network

When designing networks, systems and network administrators use the following terms to define the types of connectivity between locations and servers:

Local area networks (LANs) A local area network (LAN) is usually characterized as a high-bandwidth network. Generally, an organization owns all of its LAN network hardware and software. Ethernet is by far the most common networking standard. Ethernet speeds are generally at least 10Mbps and can scale to multiple gigabits per second. Currently, the standard
for Ethernet is the 10 Gigabit Ethernet, which runs at 10 times the speed of Gigabit Ethernet (1Gbps). Several LAN technologies, including routing and switching, are available to segment LANs and to reduce contention for network resources.

Wide area networks (WANs) The purpose of a *wide area network (WAN)* is similar to that of a LAN—to connect network devices together. Unlike LANs, however, WANs are usually leased from third-party telecommunications carriers and Internet service providers (ISPs). Although extremely high-speed WAN connections are available, they are generally costly for organizations to implement through a distributed environment. Therefore, WAN connections are characterized by lower-speed connections and, sometimes, nonpersistent connections.

The Internet If you have not heard of the Internet, you must have been locked away in a server room (without network access) for a long time. The Internet is a worldwide public network infrastructure based on the *Internet Protocol (IP)*. Access to the Internet is available through organizations known as ISPs. Because it is a public network, there is no single “owner” of the Internet. Instead, large network and telecommunications providers constantly upgrade the infrastructure of this network to meet growing demands.

Organizations now use the Internet regularly. For example, it’s rare nowadays to see advertisements that don’t direct you to one website or another. Through the use of technologies such as Virtual Private Networks (VPNs), organizations can use encryption and authentication technology to enable secure communications across the Internet.

Exploring Network Constraints

In an ideal situation, a high-speed network would connect all computers and networking devices. In such a situation, you would be able to ensure that any user of your network, regardless of location, would be able to quickly and easily access resources. When you are working in the real world, however, you have many other constraints to keep in mind, including network bandwidth and network cost.

Network Bandwidth

Network bandwidth generally refers to the amount of data that can pass through a specific connection in a given amount of time. For example, in a WAN situation, a T1 may have 1.544Mbps (megabits per second), or a standard analog modem may have a bandwidth of 56 or 57.6Kbps (kilobits per second) or less. However, your LAN’s Ethernet connection may have a bandwidth of 100Mbps. Different types of networks work at different speeds; therefore, it’s imperative that you always consider network bandwidth when you’re thinking of how to deploy domain controllers in your environment.

Network Cost

Cost is perhaps the single biggest factor in determining a network design. If cost were not a constraint, organizations would clearly choose to use high-bandwidth connections for all of their sites. Realistically, trade-offs in performance must be made for the sake of affordability. Some of the factors that can affect the cost of networking include the distance between
networks and the types of technology available at locations throughout the world. In remote or less-developed locations, you may not even be able to get access through an ISP or Telecom beyond a satellite connection or dial-up, and what is available can be quite costly. Network designers must keep these factors in mind, and often they must settle for less-than-ideal connectivity.

Before we considered the monetary value of doing business, let’s consider another definition of cost. When designing and configuring networks, you can require certain devices to automatically make data transport decisions based on an assigned network cost. These devices are commonly known as routers, and they use routing protocols to make routing decisions. One of the elements a router uses to configure a routing protocol is its ability to adjust the cost of a route. For example, a router might have multiple ways to connect to a remote site, and it may have multiple interfaces connected to it, each with different paths out of the network to which it is connected locally. When two or more routes are available, you can set up a routing protocol that states that the route with the lower cost is automatically used first.

Another cost is personnel. Do you have the personnel to do the job or do you need to hire a consultant? Remember that even if you use individuals already on staff, they will be spending time on these projects. When your IT team is working on a project, that is a cost because they cannot also be working on day-to-day tasks.

All of these factors play an important role when you make your Active Directory implementation decisions.

Overview of Active Directory Replication and Sites

We now need to cover two topics that are not only covered heavily on the Microsoft exams, but are also two areas that all IT administrators should understand. Understanding Active Directory replication and sites can help you fine-tune a network to run at peak performance.

Replicating Active Directory

Regardless of the issues related to network design and technological constraints, network users have many different requirements and needs that must be addressed. First and foremost, network resources such as files, printers, and shared directories must be made available. Similarly, the resources stored within Active Directory—and, especially, its security information—are required for many operations that occur within domains.

With these issues in mind, take a look at how you can configure Active Directory to reach connectivity goals using replication.

Active Directory was designed as a scalable, distributed database that contains information about an organization’s network resources. In previous chapters, we looked at how you can
create and manage domains and how you can use domain controllers to store Active Directory databases.

Even in the simplest of network environments, you generally need more than one domain controller. The major reasons for this include fault tolerance (if one domain controller fails, others can still provide services as needed) and performance (the workload can be balanced between multiple domain controllers). Windows Server 2008 domain controllers have been designed to contain read-write copies of the Active Directory database as well as read-only copies of the Active Directory database. However, the domain controllers must also remain current when objects are created or modified on other domain controllers.

To keep information consistent between domain controllers, you use Active Directory replication. Replication is the process by which changes to the Active Directory database are transferred between domain controllers. The end result is that all of the domain controllers within an Active Directory domain contain up-to-date information and achieved convergence. Keep in mind that domain controllers may be located very near to each other (for example, within the same server rack) or they may be located across the world from each other. Although the goals of replication are quite simple, the real-world constraints of network connections between servers cause many limitations that you must accommodate. If you had a domain controller on your local LAN, you may find that between your server connections you have Gigabit Ethernet, which runs at 1000Mbps, whereas you may have a domain controller on the other side or a WAN where the network link runs at a fraction of a T1, 56Kbps. Replication traffic must traverse each link to ensure convergence no matter what the speed or what bandwidth is available.

Throughout this chapter, you will look at the technical details of Active Directory replication and how you can use the concept of sites and site links to map the logical structure of Active Directory to a physical network topology to help it work efficiently, no matter what type of link you are working with.

Understanding Active Directory Site Concepts

One of the most important aspects of designing and implementing Active Directory is understanding how Active Directory allows you to separate the logical components of the directory service from the physical components.

The logical components—Active Directory domains, OUs, users, groups, and computers—map to the organizational and business requirements of a company.

The physical components, on the other hand, are designed based on technical issues involved in keeping the network synchronized (that is, making sure all parts of the network have the same up-to-date information). Active Directory uses the concept of sites to map to an organization’s physical network. Stated simply, a site is a collection of well-connected subnets. The technical implications of sites are described later in this chapter.

It is important to understand that no specified relationship exists between Active Directory domains and Active Directory sites. An Active Directory site can contain many domains. Alternatively, a single Active Directory domain can span multiple sites. Figure 5.1 illustrates this very important characteristic of domains and sites.
There are two main reasons to use Active Directory sites: service requests and replication.

Service Requests

Clients often require the network services of a domain controller. One of the most common reasons for this is that they need the domain controller to perform network authentication. If your Active Directory network is set up with sites, clients can easily connect to the domain controller that is located closest to them. By doing this, they avoid many of the inefficiencies associated with connecting to distant domain controllers or to those that are located on the other side of a slow network connection. For example, by connecting to a local domain controller, you can avoid the problems associated with a saturated network link, which might cause two domain controllers to be out of synch with each other.

Other network services that clients might access include the Licensing service (for tracking licenses associated with Microsoft and other compatible products) and the services used by messaging applications (such as Exchange Server). All of these functions depend on the availability of network services.

Replication

As we mentioned earlier, the purpose of Active Directory replication is to ensure that the information stored on all domain controllers within a domain remains synchronized. In environments with many domains and domain controllers, usually multiple communication paths connect them, which makes the synchronization process more complicated. A simple method of transferring updates and other changes to Active Directory involves all of the servers communicating directly with each other as soon as a change occurs; they can all update with the change and reach convergence again. This is not ideal, however, since it places high requirements on network bandwidth and is inefficient for many network environments that use slower and more

Figure 5.1 Potential relationships between domains and sites

There are two main relationships between domains and sites:

1. **One Site, Multiple Domains**
 - Site: Site #1
 - Domains: Domain A, Domain B, Domain C

2. **One Domain, Multiple Sites**
 - Domain: Domain A
 - Sites: Site #1, Site #2

Domain A

Domain Controllers

Domain B

Site #1

Domain C

Site #2
costly WAN links, especially if all environments update at the same time. Such simultaneous updating could cause the network connection at the core of your network to become saturated and decrease performance of the entire WAN.

Using sites, Active Directory can automatically determine the best methods for performing replication operations. Sites take into account an organization's network infrastructure, and Active Directory uses these sites to determine the most efficient method for synchronizing information between domain controllers. Systems administrators can make their physical network design map to Active Directory objects. Based on the creation and configuration of these objects, the Active Directory service can then manage replication traffic in an efficient way.

Whenever a change is made to the Active Directory database on a domain controller, the change is given an update sequence number. The domain controller can then propagate these changes to other domain controllers based on replication settings. In the event that the same setting (such as a user's last name) has been changed on two different domain controllers (before replication can take place), these sequence numbers are used to resolve the conflict.

Windows Server 2008 uses a feature called linked value replication that is only active when the domain is in Windows Server 2003 or 2008 domain functional level. In Windows 2000, if a change was made to a member of a group, the entire group was replicated. With linked value replication, only the group member is replicated. This greatly enhances replication efficiency and cuts down on network traffic utilization. Linked value replication is automatically enabled in Windows Server 2003 or 2008 domain functional level domains.

Planning Your Sites

Much of the challenge of designing Active Directory is related to mapping a company's business processes to the structure of a hierarchical data store. So far, you've seen many of these requirements. But what about the existing network infrastructure? Clearly, when you plan for and design the structure of Active Directory, you must take into account your LAN and WAN characteristics. Let's see some of the ways you can use Active Directory sites to manage replication traffic.

Synchronizing Active Directory is extremely important. In order to keep security permissions and objects within the directory consistent throughout the organization, you must use replication. Active Directory data store supports multimaster replication; that is, data can be modified at any domain controller within the domain because replication ensures that information remains consistent throughout the organization.

Ideally, every site within an organization has reliable, high-speed connections with the other sites. A much more realistic scenario, however, is one in which bandwidth is limited and connections are sometimes either sporadically available or completely unavailable.

Using sites, network and systems administrators can define which domain controllers are located on which areas of the network. These settings can be based on the bandwidth available between the areas of the network. Additionally, these administrators can define subnets—logically partitioned areas of the network—between areas of the network. Subnets are designed by subdividing IP addresses into usable blocks for assignment, and they are also objects found within the Sites and Services Microsoft Management Console (MMC) in the Administrative
Tools folder. The Windows Server 2008 Active Directory services use this information to decide how and when to replicate data between domain controllers.

Directly replicating information between all domain controllers might be a viable solution for some companies. For others, however, this might result in a lot of traffic traveling over slow or undersized network links. One way to efficiently synchronize data between sites that have slow connections is to use a bridgehead server. Bridgehead servers are designed to accept traffic between two remote sites and to then forward this information to the appropriate servers. Figure 5.2 provides an example of how a bridgehead server can reduce network bandwidth requirements and improve performance. Reduced network bandwidth requirements and improved performance can also be achieved by configuring replication to occur according to a predefined schedule if bandwidth usage statistics are available.

FIGURE 5.2 Using a bridgehead server

Bridgehead servers do not fit a normal hub-and-spoke WAN topology. Such a topology usually involves a core site (for example, company headquarters) with remote sites as links one off from the core. However, you can use a bridgehead server design to fit a distributed star, where you have a hub-and-spoke topology design, with additional spokes coming out of the first set of spokes. Doing so would make some of your spoke sites into smaller core sites; it is at these sites that you would place your bridgehead servers. In Figure 5.2, you can see that your Asia headquarters site is also where you can connect up to India, China, and Hong Kong—thus making Asia headquarters the ideal site for the bridgehead server.

In addition to managing replication traffic, sites also offer the advantage of allowing clients to access the nearest domain controller. This prevents problems with user authentication across slow network connections and it can help find the shortest and fastest path to resources.
such as files and printers. Therefore, Microsoft recommends that you place at least one domain controller at each site that contains a slow link. Preferably, this domain controller also contains a copy of the Global Catalog so that logon attempts and resource search queries do not occur across slow links. The drawback, however, is that deploying more copies of the Global Catalog to servers increases replication traffic.

Through proper planning and deployment of sites, organizations can best use the capabilities of the network infrastructure while keeping Active Directory synchronized.

Implementing Sites and Subnets

Now that you have an idea of the goals of replication, look at the following quick overview of the various Active Directory objects that are related to physical network topology.

The basic objects that are used for managing replication include the following:

Subnets — A subnet is a partition of a network. As we started to discuss earlier, subnets are logical IP blocks usually connected to other IP blocks through the use of routers and other network devices. All of the computers that are located on a given subnet are generally well connected with each other.

It is extremely important to understand the concepts of TCP/IP and the routing of network information when you are designing the topology for Active Directory replication. Although TCP/IP is not tested heavily in this exam, you should still generally understand it so that you know how to deploy sites properly. See *MCTS: Windows Server 2008 Network Infrastructure Study Guide* (70-642), by William Panek, Tylor Wentworth, and James Chellis (Wiley, 2008) for more information on this topic.

Sites — An Active Directory site is a logical object that can contain servers and other objects related to Active Directory replication. Specifically, a site is a grouping of related subnets. Sites are created to match the physical network structure of an organization. Sites are primarily used for slow WAN links. If your network is well connected (using fiber optics, Category 5 Ethernet, etc.), then sites are not needed.

Site links — A *site link* is created to define the types of connections that are available between the components of a site. Site links can reflect a relative cost for a network connection and can reflect the bandwidth that is available for communications.

All of these components work together to determine how information is used to replicate data between domain controllers. Figure 5.3 provides an example of the physical components of Active Directory.
Many issues are related to configuring and managing sites; all are covered in this chapter. Overall, using sites allows you to control the behavior of Active Directory replication between domain controllers. With this background and goal in mind, let’s look at how you can implement sites to control Active Directory replication so that it is efficient and in sync.

If you do not have replication set up properly, you will experience problems with your domain controllers after awhile. An example of a common replication problem is Event Log event ID 1311, which states that the Windows NT Directory Services (NTDS) Knowledge Consistency Checker (KCC) has found (and reported) a problem with Active Directory replication. This error message states that the replication configuration information in Active Directory does not accurately reflect the physical topology of the network. This error is commonly found on ailing networks that have replication problems for one reason or another.

Creating Sites

The primary method for creating and managing Active Directory replication components is to utilize the Active Directory Sites And Services tool or the MMC found within the Administrative Tools folder. Using this administrative component, you can graphically create and manage sites in much the same way you create and manage OUs.

Exercise 5.1 walks you through the process of creating Active Directory sites. In order for you to complete this exercise, the local machine must be a domain controller. Also, this exercise assumes that you have not yet changed the default domain site configuration.
Do not perform any testing on a production system or network—make sure you test site configuration in a lab setting only.

EXERCISE 5.1

Creating Sites

1. Open the Active Directory Sites And Services tool from the Administrative Tools program group.

2. Expand the Sites folder.

3. Right-click the Default-First-Site-Name item, and choose Rename. Rename the site to **CorporateHQ**.

4. Create a new site by right-clicking the Sites object and selecting New Site.
5. On the New Object–Site dialog box, type Farmington for the site name. Click the DEFAULTIPSITELINK item, an information screen pops up, then click OK to create the site. Note that you cannot include spaces or other special characters in the name of a site.

6. Notice the Farmington site is now listed under the Sites object.
Creating Subnets

Once you have created the sites that map to your network topology, it’s time to define the subnets that define the site boundaries.

Subnets are based on TCP/IPv4 or TCP/IPv6 address information. For example, the IPv4 address may be 10.10.0.0, and the subnet mask may be 255.255.0.0. This information specifies that all of the TCP/IP addresses that begin with the first two octets are part of the same TCP/IP subnet. All of the following TCP/IP addresses would be within this subnet:

- 10.10.1.5
- 10.10.100.17
- 10.10.110.120

The Active Directory Sites And Services tool expresses these subnets in a somewhat different notation. It uses the provided subnet address and appends a slash followed by the number of bits in the subnet mask. In the example in the previous paragraph, the subnet would be defined as 10.1.0.0/16.
Remember that sites typically represent distinct physical locations and almost always have their own subnets. The only way for a domain controller (DC) in one site to reach a DC in another site is to add subnet information about the remote site. Generally, information regarding the definition of subnets for a specific network environment will be available from a network designer. Exercise 5.2 walks you through the steps you need to take to create subnets and assign subnets to sites. In order to complete the steps in this exercise, you must have first completed Exercise 5.1.

EXERCISE 5.2

Creating Subnets

1. Open the Active Directory Sites And Services tool from the Administrative Tools program group.

2. Expand the Sites folder. Right-click the Subnets folder, and select New Subnet.

3. In the New Object–Subnet dialog box, you are prompted for information about the IPv4 or IPv6 details for the new subnet. For the prefix, type *10.1.1.0/24* (we are staying with the more commonly used IPv4). This actually calculates out to 10.10.0.0/16 with the mask of 255.255.255.0. Click the Farmington site, and then click OK to create the subnet.
4. In the Active Directory Sites And Services tool, right-click the newly created 10.1.1.0/24 subnet object, and select Properties.

5. On the subnet’s Properties dialog box, type **Farmington 100Mbit LAN** for the description. Click OK to continue.

6. Create a new subnet using the following information:
 - **Address:** 160.25.0.0/16
 - **Site:** Portsmouth
 - **Description:** Portsmouth 100Mbit LAN

7. Finally, create another subnet using the following information:
 - **Address:** 176.33.0.0/16
 - **Site:** CorporateHQ
 - **Description:** Corporate 100Mbit switched LAN
So far, you have created the basic components that govern Active Directory sites: sites and subnets. You also linked these two components together by defining which subnets belong in which sites. These two steps—creating sites and subnets—form the basis of mapping the physical network infrastructure of an organization to Active Directory. Now, look at the various settings that you can make for sites.

Configuring Sites

Once you have created Active Directory sites and defined which subnets they contain, it’s time to make some additional configuration settings for the site structure. Specifically, you’ll need to assign servers to specific sites and configure the site licensing options. By placing servers in sites, you tell Active Directory replication services how to replicate information for various types of servers. Later in this chapter, you’ll look at the details of working with replication within and between sites.

In Exercise 5.3, you will add servers to sites and configure CorpDC1 options. In order to complete the steps in this exercise, you must have first completed Exercises 5.1 and 5.2.

EXERCISE 5.3

Configuring Sites

1. Open the Active Directory Sites And Services tool from the Administrative Tools program group.

2. Expand the Sites folder, and click and expand the Farmington site.
3. Right-click the Servers container in the Farmington site, and select New > Server. Type FarmingtonDC1 for the name of the server, and then click OK.

4. Create a new Server object within the CorporateHQ site, and name it CorpDC1. Note that this object also includes the name of the local domain controller.

5. Create two new Server objects within the Portsmouth site, and name them PortsmouthDC1 and PortsmouthDC2. The Active Directory Sites And Service tool should now look like this:
Chapter 5 • Configuring Sites and Replication

EXERCISE 5.3 (continued)

6. Right-click the CorpDC1 server object and select Properties. In the General tab of the CorpDC1 Properties box, select SMTP in the Transports Available For Inter-site Data Transfer box, and click Add to make this server a preferred IP bridgehead server. Click OK to accept the settings.

7. When you are finished, close the Active Directory Sites And Services tool.

With the configuration of the basic settings for sites out of the way, it’s time to focus on the real details of the site topology—creating site links and site link bridges.

Configuring Replication

Sites are generally used to define groups of computers that are located within a single geographic location. In most organizations, machines that are located in close physical proximity (for example, within a single building or branch office) are well connected. A typical example is a LAN in a branch office of a company. All of the computers may be connected together using Ethernet, and routing and switching technology may be in place to reduce network congestion.

Often, however, domain controllers are located across various states, countries, and even continents. In such a situation, network connectivity is usually much slower, less reliable, and more costly than that for the equivalent LAN. Therefore, Active Directory replication must accommodate accordingly. When managing replication traffic within Active Directory sites, you need to be aware of two types of synchronization:

Intrasite Intrasite replication refers to the synchronization of Active Directory information between domain controllers that are located in the same site. In accordance with the concept of sites, these machines are usually well connected by a high-speed LAN.
Intersite replication occurs between domain controllers in different sites. Usually, this means that there is a WAN or other type of low-speed network connection between the various machines. Intersite replication is optimized for minimizing the amount of network traffic that occurs between sites.

In the following sections, you’ll look at ways to configure both intrasite and intersite replication. Additionally, you’ll see features of Active Directory replication architecture that you can use to accommodate the needs of almost any environment.

Intrasite Replication

Intrasite replication is generally a simple process. One domain controller contacts the others in the same site when changes to its copy of Active Directory are made. It compares the update sequence numbers in its own copy of Active Directory with that of the other domain controllers, then the most current information is chosen by the DC in question, and all domain controllers within the site use this information to make the necessary updates to their database.

Because you can assume that the domain controllers within an Active Directory site are well connected, you can pay less attention to exactly when and how replication takes place. Communications between domain controllers occur using the Remote Procedure Call (RPC) protocol. This protocol is optimized for transmitting and synchronizing information on fast and reliable network connections. The RPC protocol provides for fast replication at the expense of network bandwidth, which is usually readily available because most LANs today are running on Fast Ethernet (100Mbps) at a minimum.

Intersite Replication

Intersite replication is optimized for low-bandwidth situations and network connections that have less reliability. Intersite replication offers several features that are tailored toward these types of connections. To begin with, two different protocols may be used to transfer information between sites:

RPC over IP When connectivity is fairly reliable, IP is a good choice. IP-based communications require you to have a live connection between two or more domain controllers in different sites and let you transfer Active Directory information. RPC over IP was originally designed for slower WANs in which packet loss and corruption may occur often. As such, it is a good choice for low-quality connections involved in intersite replication.

Simple Mail Transfer Protocol (SMTP) Simple Mail Transfer Protocol (SMTP) is perhaps best known as the protocol that is used to send and receive email messages on the Internet. SMTP was designed to use a store-and-forward mechanism through which a server receives a copy of a message, records it to disk, and then attempts to forward it to another email server. If the destination server is unavailable, it holds the message and attempts to resend it at periodic intervals.

This type of communication is extremely useful for situations in which network connections are unreliable or not always available. If, for instance, a branch office in Peru is connected to the corporate office by a dial-up connection that is available only during certain hours, SMTP would be a good choice for communication with that branch.
SMTP is an inherently insecure network protocol. Therefore, if you would like to ensure that you transfer replication traffic securely and you use SMTP for Active Directory replication, you must take advantage of Windows Server 2008’s Certificate Services functionality.

Other intersite replication characteristics are designed to address low-bandwidth situations and less reliable network connections. These features give you a high degree of flexibility in controlling replication configuration. They include the following:

- Compression of Active Directory information. This compression is helpful because changes between domain controllers in remote sites may include a large amount of information and also because network bandwidth tends to be less available and more costly.
- Site links and site link bridges help determine intersite replication topology.
- Replication can occur based on a schedule defined by systems administrators.

You can configure intersite replication by using the Active Directory Sites And Services tool. Select the name of the site for which you want to configure settings. Then, right-click the NTDS Site Settings object in the right windowpane, and select Properties. By clicking the Change Schedule button in the NTDS Site Settings Properties dialog box, you’ll be able to configure how often replication between sites will occur (see Figure 5.4).

FIGURE 5.4 Configuring intersite replication schedules

![Configuring intersite replication schedules](image)

You will see how to set the replication schedule in Exercise 5.4.
In the following sections, you will see how to configure site links and site link bridges, as well as how to manage connection objects and bridgehead servers.

Creating Site Links and Site Link Bridges

The overall topology of intersite replication is based on the use of site links and site link bridges. **Site links** are logical connections that define a path between two Active Directory sites. Site links can include several descriptive elements that define their network characteristics. **Site link bridges** are used to connect site links together so that the relationship can be transitive. Figure 5.5 provides an example of site links and site link bridges.

Both of these types of logical connection are used by Active Directory services to determine how information should be synchronized between domain controllers in remote sites. This information is used by the KCC, which forms a replication topology based on the site topology created. The KCC service is responsible for determining the best way to replicate information within and between sites.

FIGURE 5.5 An example of site links and site link bridges

When creating site links for your environment, you’ll need to consider the following factors:

Transporting information You can choose to use either RPC over IP or SMTP for transferring information over a site link. You will need to determine which is best based on your network infrastructure and the reliability of connections between sites.

Assigning a cost value You can create multiple site links between sites and assign site links a cost value based on the type of connection. The systems administrator determines the cost value, and the relative costs of site links are then used (by the system) to determine the optimal path for replication. The lower the cost, the more likely the link is to be used for replication.
For example, a company may primarily use a T1 link between branch offices, but it may also use a slower and circuit-switched dial-up ISDN connection for redundancy (in case the T1 fails). In this example, a systems administrator may assign a cost of 25 to the T1 line and a cost of 100 to the ISDN line. This ensures that the more reliable and higher-bandwidth T1 connection is used whenever it’s available but that the ISDN line is also available.

Determining a replication schedule Once you’ve determined how and through which connections replication will take place, it’s time to determine when information should be replicated. Replication requires network resources and occupies bandwidth. Therefore, you need to balance the need for consistent directory information with the need to conserve bandwidth. For example, if you determine that it’s reasonable to have a lag time of 6 hours between when an update is made at one site and when it is replicated to all others, you might schedule replication to occur once in the morning, once during the lunch hour, and more frequently after normal work hours.

Based on these factors, you should be able to devise a strategy that allows you to configure site links.

Exercise 5.4 walks you through the process of creating site links and site link bridges. In order to complete the steps in this exercise, you must have first completed Exercises 5.1, 5.2, and 5.3.

EXERCISE 5.4

Creating Site Links and Site Link Bridges

1. Open the Active Directory Sites And Services tool from the Administrative Tools program group.

2. Expand the Sites, Inter-site Transports, and IP objects. Right-click the DEFAULTIP-SITELINK item in the right pane, and select Rename. Rename the object CorporateWAN.

The Active Directory Sites And Services tool should now look like this:

![Active Directory Sites And Services tool](image)

Chapter 5 • Configuring Sites and Replication

For example, a company may primarily use a T1 link between branch offices, but it may also use a slower and circuit-switched dial-up ISDN connection for redundancy (in case the T1 fails). In this example, a systems administrator may assign a cost of 25 to the T1 line and a cost of 100 to the ISDN line. This ensures that the more reliable and higher-bandwidth T1 connection is used whenever it’s available but that the ISDN line is also available.

Determining a replication schedule Once you’ve determined how and through which connections replication will take place, it’s time to determine when information should be replicated. Replication requires network resources and occupies bandwidth. Therefore, you need to balance the need for consistent directory information with the need to conserve bandwidth. For example, if you determine that it’s reasonable to have a lag time of 6 hours between when an update is made at one site and when it is replicated to all others, you might schedule replication to occur once in the morning, once during the lunch hour, and more frequently after normal work hours.

Based on these factors, you should be able to devise a strategy that allows you to configure site links.

Exercise 5.4 walks you through the process of creating site links and site link bridges. In order to complete the steps in this exercise, you must have first completed Exercises 5.1, 5.2, and 5.3.
3. Right-click the CorporateWAN link, and select Properties. In the General tab of the CorporateWAN Properties dialog box, type **T1 Connecting Corporate and Portsmouth Offices** for the description. Remove the Farmington site from the link by highlighting Farmington in the Sites In This Site Link box and clicking Remove. For the Cost value, type **50**, and specify that replication should occur every 60 minutes. To create the site link, click OK.

4. Right-click the IP folder, and select New Site Link. On the New Object - Site Link dialog box, name the link **CorporateDialup**. Add the Farmington and CorporateHQ sites to the site link and then click OK.
Chapter 5 • Configuring Sites and Replication

EXERCISE 5.4 (continued)

5. Right-click the CorporateDialup link, and select Properties. In the General tab of the CorporateDialup Properties dialog box, type ISDN Dialup between Corporate and Farmington for the description. Set the Cost value to 100, and specify that replication should occur every 120 minutes. To specify that replication should occur only during certain times of the day, click the Change Schedule button.

6. On the Schedule For CorporateDialup dialog box, highlight the area between 8:00am and 6:00pm for the days Monday through Friday, and click the Replication Not Available option. This will ensure that replication traffic is minimized during normal work hours.

Click OK to accept the new schedule and then OK again to create the site link.
7. Right-click the IP object, and select New Site Link Bridge. On the New Object - Site Link Bridge dialog box, name the site link bridge CorporateBridge. Note that the Corporate-Dialup and CorporateWAN site links are already added to the site link bridge. Because there must be at least two site links in each bridge, you will not be able to remove these links. Click OK to create the site link bridge.

8. When finished, close the Active Directory Sites And Services tool. It should look like this now:
Creating Connection Objects

Generally, it is a good practice to allow Active Directory’s replication mechanisms to automatically schedule and manage replication functions. In some cases, however, you may want to have additional control over replication. Perhaps you want to replicate certain changes on demand (for example, when you create new accounts). Or you may want to specify a custom schedule for certain servers.

Connection objects provide you with a way to set up these different types of replication schedules. You can create connection objects with the Active Directory Sites And Services tool by expanding a server object, right-clicking the NTDS Settings object, and selecting New Active Directory Domain Services Connection (see Figure 5.6).

FIGURE 5.6 Creating a new Active Directory Domain Services connection

Within the properties of the connection object, which you can see in the right pane of the Active Directory Sites And Services tool, you can specify the type of transport to use for replication (RPC over IP or SMTP), the schedule for replication, and the domain controllers that participate in the replication. Additionally, you can right-click the connection object and select Replicate Now.

Ensure that if you kick off a manual replication, you don’t do it during business hours if you think you do not have the bandwidth available to accomplish it. If you do it during business hours, you will most likely create a network slow-down if you do not plan properly. It’s safer to plan a test during non-business hours or during times of very little activity on the network.
Moving Server Objects between Sites

Using the Active Directory Sites And Services tool, you can easily move servers between sites. To do this, simply right-click the name of a domain controller and select Move. You can then select the site to which you want to move the domain controller object.

Figure 5.7 shows the Move Server dialog box. After the server is moved, all replication topology settings are updated automatically. If you want to choose custom replication settings, you need to manually create connection objects (as described earlier).

FIGURE 5.7 Choosing a new site for a specific server

In Exercise 5.5, you move a server object between sites. In order to complete the steps in this exercise, you must have first completed the previous exercises in this chapter.

EXERCISE 5.5

Moving Server Objects between Sites

1. Open the Active Directory Sites And Services administrative tool.
2. Right-click the server named PortsmouthDC1, and select Move.
3. In the Move Server dialog box, select the Farmington site, and then click OK. This moves this server to the Farmington site.
4. To move the server back, right-click PortsmouthDC1 (now located in the Farmington site) and then click Move. Select Portsmouth for the destination site.
5. When finished, close the Active Directory Sites And Services administrative tool.

Creating Bridgehead Servers

By default, all of the servers in one site communicate with all of the servers in another site. You can, however, further control replication between sites by using bridgehead servers. As we mentioned earlier in the chapter, using bridgehead servers helps minimize replication traffic,
especially in larger distributed star network topologies, and it allows you to dedicate machines that are better connected to receive replicated data. Figure 5.8 provides an example of how bridgehead servers work.

Figure 5.8 A replication scenario using bridgehead servers

You can use a bridgehead server to specify which domain controllers are preferred for transferring replication information between sites. Different bridgehead servers can be selected for RPC over IP and SMTP replication, thus allowing you to balance the load. To create a bridgehead server for a site, simply right-click a domain controller and select Properties, which brings up the bridgehead server’s Properties dialog box (see Figure 5.9). To make the server a bridgehead server, just select one or both replication types (called transports) from the left side of the dialog box and click the Add button to add them to the right side of the dialog box.

Figure 5.9 Specifying a bridgehead server
When you are using environments that require multiple sites, you must carefully consider where you place your servers. In doing so, you can greatly improve performance and the end user’s experience by reducing the time they must spend performing common operations such as authentication or searching Active Directory for resources.

There are two main issues to consider when you are designing a distributed Active Directory environment. The first is how you should place domain controllers within the network environment. The second is how to manage the use of Global Catalog (GC) servers. Finding the right balance between servers, server resources, and performance can be considered an art form for network and systems administrators. In the following sections, you’ll look at some of the important considerations you must take into account when you design a replication server topology.

Placing Domain Controllers

Microsoft highly recommends that you have at least two domain controllers in each domain of your Active Directory environment. As mentioned earlier in this chapter, using additional domain controllers provides the following benefits:

- Increased network performance:
 - The servers can balance the burden of serving client requests.
 - Clients can connect to the server closest to them instead of performing authentication and security operations across a slow WAN link.
- Fault tolerance (In case one domain controller fails, the other still contains a valid and usable copy of the Active Directory database).
- In Windows Server 2008, RODCs help increase security when users connect to a domain controller in a unsecured remote location.

As we just mentioned, having too few domain controllers can be a problem. However, you can also have too many. Keep in mind that the more domain controllers you choose to implement, the greater the replication traffic among them. Because each domain controller must propagate any changes to all of the others, compounding services can result in increased network traffic.

Placing Global Catalog Servers

A Global Catalog (GC) server is a domain controller that contains a copy of all the objects contained in the forest-wide domain controllers that compose the Active Directory database. Making a domain controller a GC server is very simple, and you can change this setting quite easily. That brings us to the harder part—determining which domain controllers should also be GC servers.

Where you place domain controllers and GC servers, and how many you deploy, are very important network planning decisions.

Generally, you want to make GC servers available in every site that has a slow link. This means that the most logical places to put GC servers are in every site and close to the WAN link for the best possible connectivity.

However, having too many GC servers a bad thing. The main issue is associated with replication traffic—you must keep each GC server within your environment synchronized with
the other servers. In a very dynamic environment, using additional GC servers causes a con-
siderable increase in additional network traffic.
Therefore, you will want to find a good balance between replication burdens and GC query
performance in your own environment.
To create a GC server, simply expand the Server object in the Active Directory Sites And
Services tool, right-click NTDS settings, and select Properties to bring up the NTDS Settings
Properties dialog box (see Figure 5.10). To configure a server as a GC server, simply place a
check mark in the Global Catalog box.

FIGURE 5.10 Enabling the Global Catalog on an Active Directory domain controller

Monitoring and Troubleshooting
Active Directory Replication

For the most part, domain controllers handle the replication processes automatically. How-
ever, systems administrators still need to monitor the performance of Active Directory repli-
cation, since failed network links and incorrect configurations can sometimes prevent the
synchronization of information between domain controllers.
You can monitor the behavior of Active Directory replication and troubleshoot the process
if problems occur.
Accommodating a Changing Environment

You’re a systems administrator for a medium-sized business that consists of many offices located throughout the world. Some of these offices are well connected because they use high-speed, reliable links, while others are not so fortunate. Overall, things are going well until your CEO announces that the organization will be merging with another large company and that the business will be restructured. The restructuring will involve opening new offices, closing old ones, and transferring employees to different locations. Additionally, changes in the IT budget will affect the types of links that exist between offices. Your job as the systems administrator is to ensure that the network environment and, specifically, Active Directory, keep pace with the changes and ultimately outperform them.

An important skill for any technical professional is the ability to quickly and efficiently adapt to a changing organization. When a business grows, restructures, or forms relationships with other businesses, often many IT-related changes must also occur. You may have to create new network links, for example. Fortunately, Active Directory was designed with these kinds of challenges in mind. For example, you can use the Active Directory Sites And Services administrative tool to reflect physical network changes in Active Directory topology. If a site that previously had 64Kbps of bandwidth is upgraded to a T1 connection, you can change those characteristics for the site link objects. Conversely, if a site that was previously well connected is reduced to a slow, unreliable link, you can reconfigure the sites, change the site link transport mechanisms (perhaps from IP to SMTP to accommodate a nonpersistent link), and create connection objects (which would allow you to schedule replication traffic to occur during the least busy hours). Or suppose that many of your operations move overseas to a European division. This might call for designating specific domain controllers as preferred bridgehead servers to reduce the amount of replication traffic over costly and slow overseas links.

Sweeping organizational changes inevitably require you to move servers between sites. For example, an office may close and its domain controllers may move to another region of the world. Again, you can accommodate this change by using Active Directory administrative tools. You may change your OU structure to reflect new logical and business-oriented changes, and you can move server objects between sites to reflect physical network changes.

Rarely can the job of mapping a physical infrastructure to Active Directory be “complete.” In most environments, it’s safe to assume that you will always need to make changes based on business needs. Overall, however, you should feel comfortable that the physical components of Active Directory are at your side to help you accommodate these changes.

Real World Scenario
About System Monitor

The Windows Server 2008 System Monitor administrative tool was designed so that you can monitor many performance statistics associated with using Active Directory. Included within the various performance statistics that you may monitor are counters related to Active Directory replication.

Troubleshooting Replication

A common symptom of replication problems is that information is not updated on some or all domain controllers. For example, a systems administrator creates a User account on one domain controller, but the changes are not propagated to other domain controllers. In most environments, this is a potentially serious problem because it affects network security and can prevent authorized users from accessing the resources they require.

You can take several steps to troubleshoot Active Directory replication; each of these is discussed in the following sections.

Verifying Network Connectivity

In order for replication to work properly in distributed environments, you must have network connectivity. Although ideally all domain controllers would be connected by high-speed LAN links, this is rarely the case for larger organizations. In the real world, dial-up connections and slow connections are common. If you have verified that your replication topology is set up properly, you should confirm that your servers are able to communicate. Problems such as a failed dial-up connection attempt can prevent important Active Directory information from being replicated.

Verifying Router and Firewall Configurations

Firewalls are used to restrict the types of traffic that can be transferred between networks. They are mainly used to increase security by preventing unauthorized users from transferring information. In some cases, company firewalls may block the types of network access that must be available in order for Active Directory replication to occur. For example, if a specific router or firewall prevents data from being transferred using SMTP, replication that uses this protocol will fail.

Examining the Event Logs

Whenever an error in the replication configuration occurs, the computer writes events to the Directory Service and File Replication Service event logs. By using the Event Viewer administrative tool, you can quickly and easily view the details associated with any problems in replication. For example, if one domain controller is not able to communicate with another to transfer changes, a log entry is created. Figure 5.11 shows an example of the types of events you will see in the Directory Service log, and Figure 5.12 shows a specific example of a configuration error.
FIGURE 5.11 Viewing entries in the Directory Service event log

FIGURE 5.12 Viewing an entry in the event log
Verifying That Information Is Synchronized

It’s often easy to forget to perform manual checks regarding the replication of Active Directory information. One of the reasons for this is that Active Directory domain controllers have their own read/write copies of the Active Directory database. Therefore, if connectivity does not exist, you will not encounter failures while creating new objects.

It is important to periodically verify that objects have been synchronized between domain controllers. This process might be as simple as logging on to a different domain controller and looking at the objects within a specific OU. This manual check, although it might be tedious, can prevent inconsistencies in the information stored on domain controllers, which, over time, can become an administration and security nightmare.

Verifying Authentication Scenarios

A common replication configuration issue occurs when clients are forced to authenticate across slow network connections. The primary symptom of the problem is that users complain about the amount of time it takes them to log on to Active Directory (especially during times of high volume of authentications, such as at the beginning of the workday).

Usually, you can alleviate this problem by using additional domain controllers or reconfiguring the site topology. A good way to test this is to consider the possible scenarios for the various clients that you support. Often, walking through a configuration, such as, “A client in Domain1 is trying to authenticate using a domain controller in Domain2, which is located across a slow WAN connection,” can be helpful in pinpointing potential problem areas.

Verifying the Replication Topology

The Active Directory Sites And Services tool allows you to verify that a replication topology is logically consistent. You can quickly and easily perform this task by right-clicking the NTDS Settings within a Server object and choosing All Tasks ➔ Check Replication Topology (see Figure 5.13). If any errors are present, a dialog box alerts you to the problem.

Figure 5.13 Verifying Active Directory topology using the Active Directory Sites And Services tool
Summary

In this chapter we discussed the purpose of Active Directory replication. As you learned, replication is used to keep domain controllers synchronized and is important in Active Directory environments of all sizes. Replication is the process by which changes to the Active Directory database are transferred between domain controllers.

This chapter also covered the concepts of sites, site boundaries, and subnets. In addition to learning how to configure them, you learned that subnets define physical portions of your network environment and that sites are defined as collections of well-connected IP subnets. Site boundaries are defined by the subnet or subnets that you include in your site configuration.

We also covered the basics of replication and the differences between intrasite and intersite replication. We also covered the purpose and use of bridgehead servers in depth. Although replication is a behind-the-scenes type of task, the optimal configuration of sites in distributed network environments results in better use of bandwidth and faster response by network resources. For these reasons, you should be sure that you thoroughly understand the concepts related to managing replication for Active Directory.

We covered the placement of domain controllers and Global Catalog servers in the network and how when placed properly, they can increase the performance of Active Directory operations.

We also learned how to monitor and troubleshoot replication. The Windows Server 2008 System Monitor administrative tool was designed so that you can monitor many performance statistics associated with using Active Directory.

Exam Essentials

Understand the purpose of Active Directory replication. Replication is used to keep domain controllers synchronized and is important in Active Directory environments of all sizes. Replication is the process by which changes to the Active Directory database are transferred between domain controllers.

Understand the concept of sites, site boundaries, and subnets. Subnets define physical portions of your network environment. Sites are defined as collections of well-connected IP subnets. Site boundaries are defined by the subnet or subnets that you include in your site configuration.

Understand the differences between intrasite and intersite replication. Intrasite replication is designed to synchronize Active Directory information to machines that are located in the same site. Intersite replication is used to synchronize information for domain controllers that are located in different sites.

Understand the purpose of bridgehead servers. Bridgehead servers are designed to accept traffic between two remote sites and to then forward this information to the appropriate servers. One way to efficiently synchronize data between sites that are connected with slow connections is to use a bridgehead server.
Implement site links, site link bridges, and connection objects. You can use all three of these object types to finely control the behavior of Active Directory replication and to manage replication traffic. Site links are created to define the types of connections that are available between the components of a site. Site links can reflect a relative cost for a network connection and can reflect the bandwidth that is available for communications. You can use site link bridges to connect site links together so that the relationship can be transitive. Connection objects provide you with a way to set up special types of replication schedules such as immediate replication on demand or specifying a custom schedule for certain servers.

Configure replication schedules and site link costs. You can create multiple site links between sites and you can assign site links a cost value based on the type of connection. The systems administrator determines the cost value, and the relative costs of site links are then used to determine the optimal path for replication. The lower the cost, the more likely the link is to be used for replication. Once you’ve determined how and through which connections replication will take place, it’s time to determine when information should be replicated. Replication requires network resources and occupies bandwidth. Therefore, you need to balance the need for consistent directory information with the need to conserve bandwidth.

Determine where to place domain controllers and Global Catalog servers based on a set of requirements. Where you place domain controllers and Global Catalog servers can positively affect the performance of Active Directory operations. However, to optimize performance, you need to know where the best places are to put these servers in a network environment that consists of multiple sites.

Monitor and troubleshoot replication. The Windows Server 2008 System Monitor administrative tool is designed so that you can monitor many performance statistics associated with using Active Directory. In addition to this monitoring, you should always verify basic network connectivity and router and firewall connections, as well as examine the event logs.
1. Daniel is responsible for managing Active Directory replication traffic for a medium-sized organization that has deployed a single Active Directory domain. Currently, the environment is configured with two sites and the default settings for replication. Each site consists of 15 domain controllers. Recently, network administrators have complained that Active Directory traffic is using a large amount of available network bandwidth between the two sites. Daniel has been asked to meet the following requirements:
 - Reduce the amount of network traffic between domain controllers in the two sites.
 - Minimize the amount of change to the current site topology.
 - Require no changes to the existing physical network infrastructure.

 Daniel decides that it would be most efficient to configure specific domain controllers in each site that will receive the majority of replication traffic from the other site. Which of the following solutions meets the requirements?

 A. Create additional sites that are designed only for replication traffic and move the existing domain controllers to these sites.
 B. Create multiple site links between the two sites.
 C. Create a site link bridge between the two sites.
 D. Configure one server at each site to act as a preferred bridgehead server.

2. Which of the following does not need to be manually created when you are setting up a replication scenario involving three domains and three sites?

 A. Sites
 B. Site links
 C. Connection objects
 D. Subnets

3. Which of the following services of Active Directory is responsible for maintaining the replication topology?

 A. File Replication Service
 B. Knowledge Consistency Checker
 C. Windows Internet Name Service
 D. Domain Name System
4. Will, a systems administrator for an Active Directory environment that consists of three sites, wants to configure site links to be transitive. Which of the following Active Directory objects is responsible for representing a transitive relationship between sites?
 A. Additional sites
 B. Additional site links
 C. Bridgehead servers
 D. Site link bridges

5. You have configured your Active Directory environment with multiple sites and have placed the appropriate resources in each of the sites. You are now trying to choose a protocol for the transfer of replication information between two sites. The connection between the two sites has the following characteristics:
 - The link is generally unavailable during certain parts of the day due to an unreliable network provider.
 - The replication transmission must be attempted whether the link is available or not. If the link was unavailable during a scheduled replication, the information should automatically be received after the link becomes available again.
 - Replication traffic must be able to travel over a standard Internet connection.

Which of the following protocols meets these requirements?
 A. IP
 B. SMTP
 C. RPC
 D. DHCP

6. A network administrator has decided that it will be necessary to implement multiple sites in order to efficiently manage your company’s large Active Directory environment. Based on her recommendations, you make the following decisions:
 - You will create four sites to make the best configuration.
 - You will connect the sites with site links and site link bridges.
 - Two small offices must only receive replication traffic during non-business hours.
 - The organization will own a single DNS name: supercompany.com.
 - You want to keep administration as simple as possible, and you want to use the smallest possible number of domains.

Based on this information, you must plan the Active Directory domain architecture. What is the minimum number of domains that you must create to support this configuration?
 A. 0
 B. 1
 C. 4
 D. 8
7. Andrew is troubleshooting a problem with Active Directory. One systems administrator has told him that she made an update to a User object and that another system administrator reported that he had not seen the changes appear on another domain controller. It has been over a week since the change was made. Andrew further verifies the problem by making a change to another Active Directory object. Within a few hours, the change appears on a few domain controllers, but not on all of them.

Which of the following are possible causes for this problem? Choose all that apply.

A. Network connectivity is unavailable.
B. Connection objects are not properly configured.
C. Sites are not properly configured.
D. Site links are not properly configured.
E. A WAN connection has failed.
F. Andrew has configured one of the domain controllers for manual replication updates.

8. A systems administrator suspects that there is an error in the replication configuration. How can he look for specific error messages related to replication?

A. By using the Active Directory Sites And Services administrative tool
B. By using the Computer Management tool
C. By going to Event Viewer ➤ System log
D. By going to Event Viewer ➤ Directory Service log

9. Christina is responsible for managing Active Directory replication traffic for a medium-sized organization. Currently, the environment is configured with a single site and the default settings for replication. The site contains over 50 domain controllers and the system administrators are often making changes to the Active Directory database. Recently, network administrators have complained that Active Directory traffic is consuming a large amount of network bandwidth between portions of the network that are connected by slow links. Ordinarily, the amount of replication traffic is reasonable, but recently users have complained about slow network performance during certain hours of the day.

Christina has been asked to alleviate the problem while meeting the following requirements:

· Be able to control exactly when replication occurs.
· Be able to base Active Directory replication on the physical network infrastructure.
· Perform the changes without creating or removing any domain controllers.

Which two of the following steps can Christina take to meet these requirements?

A. Create and define Connection objects that specify the hours during which replication will occur.
B. Create multiple site links.
C. Create a site link bridge.
D. Create new Active Directory sites that reflect the physical network topology.
E. Configure one server at each of the new sites to act as a bridgehead server.
10. James, a systems administrator, suspects that Active Directory replication traffic is consuming a large amount of network bandwidth. James is attempting to determine the amount of network traffic that is generated through replication. He wants to do the following:
 - Determine replication data transfer statistics.
 - Collect information about multiple Active Directory domain controllers at the same time.
 - Measure other performance statistics, such as server CPU utilization.

Which of the following administrative tools is most useful for meeting these requirements?
 A. Active Directory Users And Computers
 B. Active Directory Domains And Trusts
 C. Active Directory Sites And Services
 D. Event Viewer
 E. Performance

11. You are the administrator of a large, distributed network environment. Recently, your IT department has decided to add various routers to the environment to limit the amount of traffic going to and from various areas of the network. You need to reconfigure Active Directory replication to reflect the physical network changes. Which of the following Active Directory objects should you modify to define the network boundaries for Active Directory sites?
 A. Site links
 B. Site link bridges
 C. Bridgehead servers
 D. Subnets

12. You have recently created a new Active Directory domain by promoting several Windows Server 2008 computers to domain controllers. You then use the Active Directory Sites And Services tool to configure sites for the environment. You soon find that changes that are made on one domain controller may not appear in the Active Directory database on another domain controller. By checking the Directory Services log using the Event Viewer application, you find that one of the domain controllers at a specific site is not receiving Active Directory updates. Which of the following are possible reasons for this? (Choose all that apply.)
 A. Network connectivity has not been established for this server.
 B. A firewall is preventing replication information from being transmitted.
 C. There are not enough domain controllers in the environment.
 D. There are too many domain controllers in the environment.
 E. You chose to disable Active Directory replication during the promotion of the machine to a domain controller.

13. You administer a network that consists of one domain spanning three physical locations: San Jose, Chicago, and Austin. All three locations contain domain controllers. You have a T1 line between San Jose and Chicago, with an ISDN for backup. The ISDN line must have the default site link cost assigned to it. You want Austin to always use San Jose for its replication communication even though a link exists between Austin and Chicago for other purposes.
In the following diagram, select and place the correct relative costs that should be assigned to the various site links. Each cost can only be used once.

14. You need to create a new site named San Diego. Take a look at the following screen. What would you do next in order to create the new site?

A. Right-click CorporateHQ.
B. Right-click Sites.
C. Double-click CorporateHQ.
D. Double-click Sites.
15. You administer a network with locations at two different sites. Both a T1 line and a dial-up line used for redundancy connect the sites. You want to ensure that replication normally occurs on the T1 line and that the dial-up line is only there as backup in case the T1 goes down. What should you do to meet these requirements? Choose all that apply.

A. Lower the cost of the T1 line.
B. Lower the cost of the dial-up line.
C. Raise the cost of the T1 line.
D. Raise the cost of the dial-up line.

16. You are the administrator for a network with locations at three different sites. You would like to specify the placement of the Global Catalog (GC) server. You have a central site located in New York, and two remote sites located in New Jersey and Connecticut. There are 100 users located in New York and 20 at each of the smaller locations. You have two full T1s connecting New Jersey and Connecticut to New York. What state would it make sense to put your GC in if you are only going to use one Global Catalog?

A. Connecticut
B. New Jersey
C. New York
D. All of the above

17. As the network administrator for RJS LLC, you are interested in specifying a bridgehead server at a location due to a recent merger. Your company just bought ABC Inc., and a large Active Directory domain comes from this acquisition. You need to bring up a new domain controller but you need to specify the intrasite replication. How do you specify this server as a bridgehead server?

A. In the Active Directory Sites And Services administrative tool, right-click a domain controller and select Properties. Select one or both replication transports from the left and click Add.
B. In the system Registry, change the enum_bridgehead value in HKEY_LOCAL_MACHINE to 1. Reboot the server.
C. In the Active Directory Sites and Services tool, right-click a domain controller and select Properties. Choose Add from the bridgehead server tab.
D. In the Control Panel, click the Active Directory Management applet, and in the Sites tab, select the Make This Server A Bridgehead Server option.

18. You are the administrator for your company’s Active Directory infrastructure. The company has three domain controllers, each of which has Knowledge Consistency Checker (KCC) errors consistently popping up in the directory services Event Viewer log. What does this indicate?

A. Replication problems
B. DNS problems
C. Name resolution problems
D. Problems associated with Global Catalog placement
19. You need to keep track of licensing with the licensing server. Where can you configure the licensing server so that as the system administrator you can ensure you are compliant?
 A. Configure licensing in the Control Panel under the Licensing Applet.
 B. Configure licensing in the Registry under the `HKEY_CLASSES_ROOT` key.
 C. Configure licensing in the Computer Management MMC.
 D. Configure licensing in the Active Directory Sites And Services tool.

20. You are the network administrator responsible for deploying sites and subnets within your organization. You want to make sure you have set up your subnet objects correctly. From the following list, choose which subnet object cannot be used.
 A. 10.1.1.0
 B. 192.168.256.0
 C. 11.1.1.0
 D. 172.16.1.0
Answers to Review Questions

1. D. Preferred bridgehead servers receive replication information for a site and transmit this information to other domain controllers within the site. By doing this, Daniel can ensure that all replication traffic between the two sites is routed through the bridgehead servers and that replication traffic will flow properly between the domain controllers.

2. C. By default, Connection objects are automatically created by the Active Directory replication engine. You can choose to override the default behavior of Active Directory replication topology by manually creating Connection objects, but this step is not required.

3. B. The Knowledge Consistency Checker (KCC) is responsible for establishing the replication topology and ensuring that all domain controllers are kept up to date.

4. D. Site link bridges are designed to allow site links to be transitive. That is, they allow site links to use other site links to transfer replication information between sites. By default, all site links are bridged. However, you can turn off transitivity if you want to override this behavior.

5. B. The Simple Mail Transfer Protocol (SMTP) was designed for environments in which persistent connections may not always be available. SMTP uses the store-and-forward method to ensure that information is not lost if a connection cannot be made.

6. B. Because no relationship exists between domain structure and site structure, you only need one domain. Generally, if you have only one domain, you may need many domain controllers—at least one in each site.

7. A, B, C, D, E, F. Misconfiguration of any of these components of Active Directory may cause a replication failure.

8. D. The Directory Service event log contains error messages and information related to replication. These details can be useful when you are troubleshooting replication problems.

9. A, D. By creating new sites, Christina can help define settings for Active Directory replication based on the environment’s network connections. She can use Connection objects to further define the details of how and when replication traffic will be transmitted between the domain controllers.

10. E. Through the use of the Performance administrative tool, systems administrators can measure and record performance values related to Active Directory replication. James can also use this tool to monitor multiple servers at the same time and view other performance-related statistics.

11. D. Subnets define the specific network segments that are well connected.

12. A, B. Because replication is occurring between most of the domain controllers, it is likely that a network problem is preventing this domain controller from communicating with the rest. A lack of network connectivity or the presence of a firewall can also prevent replication from occurring properly. The number of domain controllers in an environment will not prevent the replication of information, nor can replication be disabled during the promotion process.
13. The ISDN line is required to have the default cost of 100. That means that the T1 line’s cost must be lower than 100 for this connection to be used by preference, and the only choice is 50. That leaves costs of 150 and 200 for the Austin links. Because Austin will never get replication information from Chicago, that link’s cost should be 200. That only leaves 150 for the cost of the link between Austin and San Jose.

14. B. You can create new sites using the New Site action from the Sites contextual menu.

15. A, D. Lower costs are preferred over higher costs. However, if the lower cost connection fails for whatever reason, the higher cost link will be used.

16. C. Because you will only be using one GC server, it makes sense to position it centrally to the rest of the servers (New Jersey and Connecticut) on your network.

17. A. To make a bridgehead server, you simply need to right-click the domain controller you want to change to bridgehead server, select Properties, and add the transports.

18. A. Because of the nature of KCC errors, it’s important to understand that they directly relate to replication problems, site linkage issues, and so on. KCC errors are indicative of replication problems.

19. D. As a systems administrator, you may want to use the Licensing Service to keep tabs on your compliance. You can do this in the Active Directory Sites And Services administration tool.

20. B. 192.168.256.0 is an invalid IP address and cannot be used as a subnet object.
Chapter 6

Configuring Active Directory Server Roles

MICROSOFT EXAM OBJECTIVES COVERED IN THIS CHAPTER:

✓ Configuring Additional Active Directory Server Roles
 - Configure Active Directory Lightweight Directory Service (AD LDS). May include but is not limited to: migration to AD LDS; configure data within AD LDS; configure an authentication server; server core; Windows Server 2008 Hyper-V
 - Configure Active Directory Rights Management Service (AD RMS). May include but is not limited to: certificate request and installation; self-enrollments; delegation; Active Directory Metadirectory Services (AD MDS); Windows Server virtualization
 - Configure the read-only domain controller (RODC). May include but is not limited to: unidirectional replication; Administrator role separation; read-only DNS; BitLocker; credential caching; password replication; syskey; Windows Server virtualization
 - Configure Active Directory Federation Services (AD FS). May include but is not limited to: install AD FS server role; exchange certificate with AD FS agents; configure trust policies; configure user and group claim mapping; Windows Server virtualization

✓ Creating and Maintaining Active Directory Objects
 - Configure account policies. May include but is not limited to: domain password policy; account lockout policy; fine-grain password policies
Configuring Active Directory Certificate Services

- Install Active Directory Certificate Services. May include but is not limited to: standalone vs. enterprise; CA hierarchies—root vs. subordinate; certificate requests; certificate practice statement
- Configure CA server settings. May include but is not limited to: key archival; certificate database backup and restore; assigning administration roles
- Manage certificate templates. May include but is not limited to: certificate template types; securing template permissions; managing different certificate template versions; key recovery agent
- Manage enrollments. May include but is not limited to: network device enrollment service (NDES); autoenrollment; Web enrollment; smart card enrollment; creating enrollment agents
- Manage certificate revocations. May include but is not limited to: configure Online Responders; Certificate Revocation List (CRL); CRL Distribution Point (CDP); Authority Information Access (AIA)
So far, you have learned how to install the main components of Active Directory. At this point, you should be able to install Domain Name System (DNS) and Active Directory. You should also understand what domains, sites, and trees can do for your organization.

In this chapter, we are going to take your domain a step further. First, we are going to talk about the Server Manager application, which allows you to install the many different server roles. Then we are going to dive into the five main Active Directory server roles and talk about what they can do to make your network run more securely and efficiently.

As you most likely noticed, this chapter covers many exam objectives. We cannot stress enough how important it is for you to know and understand these five Active Directory server roles before you attempt the MCTS 70-640 exam.

Understanding Server Manager

In Chapter 1, “Overview of Active Directory,” we briefly mentioned some of the administration tools available in Windows Server 2003, including the Manage Your Server, Configure Your Server, and Add/Remove Windows components.

Windows Server 2008 combines many of these tools in a new Microsoft Management Console (MMC) snap-in called Server Manager. With Server Manager, an administrator can view the server configuration and installed roles. Server Manager also includes links for adding and removing features and roles (see Figure 6.1).

Server Manager is your one-stop shopping MMC snap-in. By that, I mean that you can take care of all your server management needs in one easy interface. In this chapter, we are going to discuss the following roles that you can install and manage using Server Manager.

- Active Directory Certificate Services
- Active Directory Domain Services
- Active Directory Federation Services
- Active Directory Lightweight Directory Services
- Active Directory Rights Management Services
Configuring Active Directory Certificate Services

Using Active Directory Certificate Services (AD CS), administrators configure public key certificate services. AD CS security allows a private key to be combined with objects (such as users and computers), devices (such as routers), or services. The public-key infrastructure greatly increases data security.

In Windows Server 2008, AD CS provides services for creating and managing public key certificates used in software security systems that employ public key technologies. Organizations can use AD CS to enhance security by binding the identity of a user, device, or service to a corresponding private key. AD CS also includes features that allow you to manage certificate enrollment and revocation in a variety of environments.

Think of a digital certificate as a carrying case for a public key. A certificate contains the public key and a set of attributes, like the key holder’s name and email address. These attributes specify something about the holder: their identity, what they’re allowed to do with the certificate, and so on. The attributes and the public key are bound together because the certificate is digitally signed by the entity that issued it. Anyone who wants to verify the certificate’s contents can verify the issuer’s signature.

Certificates are one part of what security experts call a public-key infrastructure (PKI). A PKI has several different components that you can mix and match to achieve the desired results.
Applications supported by AD CS include Secure/Multipurpose Internet Mail Extensions (S/MIME), secure wireless networks, Virtual Private Networks (VPN), IP security (IPsec), Encrypting File System (EFS), smart card logon, Secure Socket Layer/Transport Layer Security (SSL/TLS), and digital signatures.

The following are some of the AD CS components:

Cert Publishers group Certificates are used to increase security by allowing for strong authentication methods. User accounts are placed within the Cert Publishers group if they need to be able to publish security certificates. Generally, these accounts are used by Active Directory security services.

PKI-savvy applications These applications allow you and your users to do useful things with certificates, like encrypt email or network connections. Ideally, the user shouldn’t have to know (or even necessarily be aware) of what the application is doing—everything should work seamlessly and automatically. The best-known examples of PKI-savvy applications are web browsers like Internet Explorer and Firefox and email applications like Outlook and Outlook Express.

Certificate templates Certificate templates act like rubber stamps: By specifying a particular template as the model you want to use for a newly issued certificate, you’re actually telling the CA which optional attributes to add to the certificate, as well as implicitly telling it how to fill in some of the mandatory attributes. Templates greatly simplify the process of issuing certificates because they keep you from having to memorize the names of all the attributes you might potentially want to put in a certificate. In Windows Server 2008, multiple templates are available and you also have the ability to secure templates using template permissions.

Online Responder service Some applications—including S/MIME, SSL, EFS, and smart cards—need to validate the status of certificates. The Online Responder service authoritatively responds to such requests.

Certification practice statement A Certification practice statement (CPS) is a statement that is issued by a certificate creator. It represents the creator’s practices for issuing and validating certificates. The CPS represents the technical, procedural, and personnel policies and practices of the issuing certification authority (CA) organization.

Enrollment agents Enrollment agents are administrators who have the ability to enroll users into the certificate services program. Enrollment agents can issue and manage certificate requests.

Network device enrollment service (NDES) Network devices such as routers do not have accounts in the Active Directory Domain. The NDES allows such network devices to obtain certificates.

Web enrollment With web enrollment, users can easily request certificates and retrieve certificate revocation lists (CRLs) through a web browser.

Installing Active Directory Certificate Services

When you are installing AD CS, the installation wizard will walk you through the installation process, and you will need to answer some configuration questions. If at any time during installation
you do not know how to configure an option, you can click on the help link for explanations. Here are some of the AD CS options that you can configure during the installation:

Certificate authorities (CAs) Certificate authorities issue, revoke, and publish certificates for their clients; big CAs like Thawte and VeriSign may do this for millions of users. You can also set up your own CA for each department or workgroup in your organization if you want. Each CA is responsible for choosing what attributes it will include in a certificate and what mechanism it will use to verify those attributes before it issues the certificate.

There are three types of CA:

- Enterprise Root CAs (automatically integrated with Active Directory) are the most trusted CAs of the hierarchy. They hold the certificates that you issue to the users within your organization.
- Stand-Alone Root CAs hold the CAs that you issue to Internet users.
- Subordinate CAs are below the Enterprise and Stand Alone Root CAs in the hierarchy. The Enterprise or Stand Alone Root CAs give certificates to the Subordinate CAs, which in turn issue certificates to objects and services.

Cryptographic service provider (CSP) The CSP is the mechanism that is responsible for authentication, encoding, and encryption services that Windows-based applications access through the Microsoft Cryptography application programming interface (CryptoAPI). Every CSP offers a unique implementation of the CryptoAPI. Some CSPs offer a strong cryptographic algorithm, while others use hardware components, such as smart cards.

Hash algorithm An algorithm that produces a hash value of some piece of data, such as a message or session key, is called a hash algorithm. If you use a well-designed hash algorithm, the hash value changes when the data changes. Due to this characteristic, hash values are useful when you are trying to detect whether any modifications have been made to data (such as a message). Also, a well-designed hash algorithm makes it almost impossible for two independent inputs that have the same hash value.

Exercise 6.1 will show you the steps you need to follow to install the AD CS server. You need to complete the exercises in Chapter 3, “Active Directory Planning and Installation,” before you attempt Exercise 6.1.

EXERCISE 6.1

Installing Active Directory Certificate Services

1. Open the Server Manager MMC by selecting Start ➤ Administrative Tools ➤ Server Manager.

2. Under Roles Summary, click the link labeled Add Role.
3. On the Select Server Roles screen, check the box next to Active Directory Certificate Services and click Next to continue.

4. At the Active Directory Certificate Services (AD CS) screen, read the explanation of AD CS, then click Next.
5. At the Select Role Services screen, make sure the Certificate Authority and Certificate Authority Web Enrollment boxes are both checked.

6. When you check the Certificate Authority Web Enrollment box, the Add Roles Wizard may appear, stating that you need to install supporting services. If you see this wizard, click the Add Required Role Services button. Otherwise go on to step 7.

7. Once both check boxes are checked on the Select Role Services screen, click Next.
8. At the Specify Setup Type screen, choose Enterprise (Recommended) and click Next.

9. The Specify CA Type screen appears. This is where you decide what type of CA you will use. If you have only one CA or this is the first CA, choose Root CA (Recommended). If you are going to receive your certificates from a higher CA (either your own root or a third-party company) choose Subordinate CA. Click Next.
Chapter 6 • Configuring Active Directory Server Roles

EXERCISE 6.1 (continued)

10. At the Set Up Private Key screen, choose Create A New Private Key, then click Next.

This option allows you to create a new key for our certificate server. You would choose Use Existing Private Key if you were reinstalling or using previously issued keys.

11. When the Configure Cryptography For CA screen appears, you must select a CSP. Choose RSA#Microsoft Software Key Storage Provider. Make sure that the Key Character Length is 2048 and choose sha1 for the hash algorithm. Click Next.
12. At the Configure CA Name screen, accept the defaults and click Next. The common name is the general name that is used to help identify the CA and the common name is also added to all issued certificates.

EXERCISE 6.1 (continued)

13. At the Set The Certificate Validity Period screen, change the default to 1 Years and click Next.
Chapter 6 • Configuring Active Directory Server Roles

EXERCISE 6.1 (continued)

14. The Configure Certificate Database screen will prompt you to enter the storage location for your database files. Accept the defaults and click Next.

15. The Web Server IIS screen appears. This is an informational screen. Click Next.

16. At the Select Role Services screen, click Next. These are all the services you need to install IIS so it works with the certificate server.

17. At the Confirm Installation Selections screen, you will see a warning message stating that the name of this server must remain unchanged for the certificate server to continue to run properly. Click Install.
Enrolling User and Computer Certificates

Now that we have installed the AD CS, it’s time for our users and computers to receive certificates. Users can receive their certificates three ways:

- Through Group Policy objects (GPOs)
 You can use group policies to automatically enroll user and computer certificates, making the entire certificate process transparent to your end users. See Chapter 8, “Configuring Group Policy Objects.”

- Through web enrollment
 You can request a certificate by using http://servername/certsrv (see Exercise 6.3).

- Through certificate autoenrollment
 To set up certificate autoenrollment, you configure the local security policy (see Figure 6.2 and Exercise 6.2).
FIGURE 6.2 Configuring autoenrollment through the Local Security Policy application

Real World Scenario

User Enrollment through autoenrollment

As an IT administrator, security is always a major concern on any network. When deciding to implement certificates, you must decide how you want to issue the certificates. It is always a good practice to auto enroll your end users. The fewer steps that an end user has to do, the better the chance that it will get done. We are not saying this in a bad way. Your end users are not as concerned with the network security as you are as an administrator. End users start doing their day-to-day tasks and before you know it, they forgot to implement the certificate. Try to make it a practice of auto enrolling your end users to make sure that the certificate gets issued and the network is secure.

Exercise 6.2 shows the steps you need to take to configure autoenrollment.
EXERCISE 6.2

Configuring Certificate Autoenrollment

2. In the left pane, click Public Key Policies. In the right pane, right-click Certificate Services Client - Auto-Enrollment and choose Properties.

3. In the Configuration Model drop-down list, choose Enabled and click OK.
Exercise 6.3 will show you how to get a certificate using a web browser.

EXERCISE 6.3

Request a Certificate Using Your Web Browser

1. Open Internet Explorer by selecting Start ➔ Internet Explorer.

2. Enter `http://server1/certserv` in the Address bar. Note: server1 should be replaced with whatever the local server name is.

3. Click the Request A Certificate link.

5. On the Advanced Certificate Request page, choose Create And Submit A Request To This CA.

6. If you have a pop-up blocker enabled, you might receive a message about the information bar. Click Close and then right-click the information bar on the top of the website. If a second Information box appears telling you to add the website to the secure site list, click OK.

7. On the Advanced Certificate Request page, accept the defaults and click the Submit button. (If the Submit button is grayed out, your Internet security settings are too high. Reduce them and try again.)
Chapter 6 • Configuring Active Directory Server Roles

EXERCISE 6.3 (continued)

8. An information box will appear asking if you want this website to request a certificate. Click Yes.

9. A box will appear telling you that the certificate was issued to you. To accept this certificate, click Install This Certificate.

10. At the Web Access Confirmation screen, click Yes. (This confirmation is letting you know that a certificate is being added to your system.)

11. The Certificate Installed screen appears when installation is complete. Close the web browser.
Revoking Certificates

Occasionally, you will need to remove a certificate from a user or computer. This is known as certificate revocation. For example, if a user gets terminated from your organization, as an administrator, you have the ability to revoke this user’s certificate so that they cannot access any data or confidential information after they leave the company.

The following are some of the certificate revocation components:

Certificate revocation list (CRL) When certificates get revoked, they are listed in the certificate revocation list (CRL). When configured properly by an administrator, this list is used by all the certificate servers. The CRL helps validate certificates and helps prevent revoked certificates from being used.

CRL distribution point (CDP) You need to publish your CRL to a shared location called a CRL distribution point (CDP). This gives your CRL a central location that all the certificate servers can share and use.

Remember to change the URL distribution point for the authority information access (AIA) for any new root CA. You need to make this location accessible to all users in your organization’s network. The offline root CA’s default AIA points are not accessible to users on the network. If you do not change the location of the AIA, certificate chain verification fails.

Online Responder The Online Responder is the server component of a certificate validation method called Online Certificate Status Protocol (OCSP). When certificates get revoked, your certificate server needs to make sure that these certificates don’t get used again. You can perform this validation in many ways. The most common validation methods are CRLs, delta CRLs, and OCSP responses. Previous versions of Windows Server only supported CRLs. Windows Vista and the Windows Server 2008 operating system support both CRL and OCSP as methods for determining certificate status. The OCSP support applies to both the client component and the server component (called the Online Responder).

Exercise 6.4 walks you through the process of revoking a certificate using the Certificate Authority MMC snap-in (this MMC is installed automatically after the installation of your certificate server). You must have completed Exercise 6.1 and 6.3 in order to complete this exercise.
EXERCISE 6.4

Revoking a Certificate

1. Open the Certificate Authority MMC by selecting Start ➤ Administrative Tools ➤ Certificate Authority.

2. On the left pane, expand the server name. Click the Issued Certificates folder. Right-click the certificate (right pane), and in the menu, choose All Tasks ➤ Revoke Certificate.

3. In the Certificate Revocation dialog box, you can choose the reason for the revocation and the effective date. Choose Unspecified and enter today’s date. Click Yes. Close the Certificate Authority.
Configuring Additional CA Server Settings

You need to complete some important tasks while you are working on a certificate server. At this point, you have learned how to install an Enterprise Root CA, configure automatic certificate requests, set up web enrollment, and revoke a certificate. We will finish this section by covering some of the following tasks:

Key archival Key archival allows a key to be stored for later recoverability if necessary. In a Windows Server 2008 CA, key archival is automatic. The private key portion of a public-private key pair is archived and can be recovered when needed.

Note that when a private key is recovered, the data or messages that it was associated with are not recovered. Key recovery only allows an individual to recover lost or damaged keys and allows an administrator to assume the role of an account for data access or recovery.

Key recovery agent The key recovery agent is a role (a set of rights) that you can give an individual so that they have the permission to recover a lost or damaged key.

Assigning administrative roles Using the Certificate Authority MMC, you can assign users or administrators rights to help manage the certificate server.

To assign an individual a role, right-click the name of the server in the Certificate Authority MMC and choose Properties. Click the Security tab. Add the individual and choose their roles.

Rights and permissions are discussed in detail in Chapter 7, “Administering Active Directory.”

Database backup and restore One task that all administrators need to perform is backing up and restoring the certificates and keys. To back up and restore certificates, you use the Certificate Authority MMC. Exercise 6.5 will walk you through backing up your Certificate Authority server.

EXERCISE 6.5

Backing Up the Certificate Authority Server

1. Open the Certificate Authority MMC by selecting Start ➤ Administrative Tools ➤ Certificate Authority.
2. In the left pane, right-click the name of the server, then choose All Tasks ➤ Back Up CA.

3. When the Certificate Authority Backup Wizard appears, click Next.

4. At the Items To Back Up screen, click the Private Key And CA Certificate check box. Next to the Back Up To This Location field, click the Browse button. Choose a location for your backup and click OK. Click Next.
5. At the Select A Password screen, enter and confirm a password. For this exercise use P@ssw0rd. Click Next.

6. At the Completing The Certificate Authority Backup Wizard screen, click Finish.

7. Close the Certificate Authority MMC.
Understanding Active Directory Domain Services

With Active Directory Domain Services (AD DS), you manage objects (users, computers, printers, etc.) on a network. Active Directory is the database that stores all of your domain objects. In a Windows Server 2000, 2003, or 2008 network, you can not have a domain without Active Directory.

Introducing the New Domain Services Features in Windows Server 2008

Many new AD DS features have been added in Windows Server 2008. These features improve the security and efficiency of deploying and administering AD DS.

User interface improvements Domain services are easier to install using the updated Installation Wizard for AD DS. Administrators can set up domain controllers anywhere in the organization. An improved AD DS user interface offers additional installation options for domain controllers. One of these is the ability to set up read-only domain controllers (RODCs).

Read-only domain controllers Windows Server 2008 supports a new type of domain controller, the read-only domain controller (RODC). You can safely install an RODC in a location that has limited security, such as a small offsite office. Offsite users no longer have to be authenticated across a slow WAN connection.

Auditing Previous versions of Microsoft Windows Server supported auditing of successful or unsuccessful changes to Active Directory objects; however, the nature of the change was not included in the Security Log. In Microsoft Windows Server 2008, you can view the new and old values of the object and its attributes.

Fine-grained password policies In Microsoft Windows Server 2000 and 2003, domain-based password policies and account lockout policies applied to all users in the domain. There was no inexpensive way to implement multiple such policies for individuals or groups. In Windows Server 2008, fine-grained password policies support multiple password and account lockout policies in the same domain.

Restartable Active Directory Domain Services With Microsoft Windows Server 2008, administrators can stop or restart AD DS while other services not dependent on Active Directory (DNS, DHCP, etc.) continue to operate. For example, administrators can do an offline defragmentation of the Active Directory database or apply security updates without needing to restart the machine.

Database mounting tool In previous versions of Active Directory, if an object got deleted, an administrator had to load multiple online backups until they found the object to restore. Windows Server 2008 Active Directory includes a database mounting tool (Dsamain.exe) that makes it quicker and easier to find and restore specific data. The tool supports online and Volume Shadow Copy Service (snapshot) backups.
Security Features Available for Domain Services

Two important security features are available for domain services in Windows Server 2008—RODCs and BitLocker Drive Encryption.

Read-Only Domain Controllers

As stated earlier, RODCs allow you to have a non-editable copy of Active Directory in an area that may be a security risk. RODCs hold an entire copy of Active Directory and the replication traffic is unidirectional. Unidirectional replication means that other domain controllers can talk to an RODC but an RODC cannot talk to other domain controllers.

One advantage to having an RODC is that you can give a normal user the administrator role for the RODC, and that user can do any type of maintenance on it. The user does not need to be a domain administrator; they are allowed to have the maintenance role for just the one RODC. This concept is known as administrator role separation.

You can also load DNS on an RODC. This makes a read-only copy of the DNS database. The downside to a read-only DNS server is that it does not allow dynamic updates (see Chapter 2, “Domain Name System (DNS)”). The benefit is that you do not have to worry about hackers or unauthorized domain users changing the DNS database.

RODCs do not store account credentials. They allow for authentication through credential caching, but not all accounts have to be cached. You can decide which accounts to cache on an RODC by using a password replication policy. This policy allows an administrator to determine which user groups will be allowed to use the RODC credential caching.

To install an RODC, use the dcpromo.exe application (discussed in Chapter 3, “Planning and Installing Active Directory,” and Chapter 4, “Installing and Managing Trees and Forests”). In the Active Directory Domain Services Installation Wizard, on the Additional Domain Controller Options page, you check the box labeled Read-Only Domain Controller (RODC) (see Figure 6.3).

FIGURE 6.3 Installing an RODC
BitLocker Drive Encryption

Another way to add security in a non-secure location is through the use of BitLocker Drive Encryption. The BitLocker data-protection feature, new to Windows Server 2008, allows an IT administrator to encrypt both the operating system volume and additional data volumes within same server. However, BitLocker is not installed by default. To install the BitLocker security, use Server Manager (see Figure 6.4).

FIGURE 6.4 Using the Add Features Wizard of Server Manager to install BitLocker

Active Directory Federation Services

Active Directory Federation Services (AD FS) provides Internet-based clients a secure identity access solution that works on both Windows and non-Windows operating systems. Normally when a user from one network tries to access an application in another network, they must have a secondary username and password. AD FS allows organizations to set up trust relationships between networks and supports single sign-on (SSO), which allows users to access applications on other networks without
needing secondary passwords. Security is improved and administrators spend less time resetting passwords when users don’t have to remember multiple passwords.

AD FS requires an AD FS server on both ends of the connection. For example, if company A is going to set up trust relationship with company B, the AD FS server needs to be configured at both company A and company B.

Installing AD FS

Exercise 6.6 shows you the steps you need to perform to install the AD FS through the Server Manager MMC.

EXERCISE 6.6

Installing the AD FS

1. Open the Server Manager MMC by selecting Start ➤ Administrative Tools ➤ Server Manager.

2. In the left pane, click Roles. In the Roles Summary section of right pane, click Add Roles.
3. On the Select Server Roles screen, click the Active Directory Federation Services check box and click Next.

![Select Server Roles](image)

4. On the Introduction To AD FS screen, click Next.

5. On the Select Role Services screen, choose the AD FS Web Agent check box. A dialog box appears asking you to confirm the additional services that need to be installed. Click Add Required Role Services. When the Select Role Services screen reappears, Click Next.

![Add Roles Wizard](image)
6. On the Specify Federation Server screen, type the name of your server and domain and click Validate.

You will see an error message explaining that the other Federation server that you are trying to connect to is unavailable. That is OK for this exercise. Click Next.

7. At the Introduction To IIS screen, click Next.

8. On the Select Role Services screen, you see the additional services needed to install IIS. All the required boxes are already checked. Click Next.
9. The Confirm Installation Selections screen shows you all the services and roles that you are about to install. Click Install.

10. After the installation is finished, click Close.
Configuring AD FS

Now that the AD FS is installed and running, you need to learn how to configure some of the important options. In the AD FS, you can configure trust policies, AD FS agents, and user and group mapping.

AD FS Web Agents Administrators have the ability to configure a Windows NT token-based Web Agent. To support this new feature, Windows Server 2008 AD FS includes a user interface for the AD FS Web Agent role service. The Web Agent account is a service account that calls upon other services.

Trust policies The AD FS trust policy is a file that outlines the set of rules that a Federation Service uses to recognize partners, certificates, account stores, claims, and the other numerous properties that are associated with the Federation Service.

User and group claim mapping In basic terms, claims mean that each partnered location agrees and appropriately maps the AD FS trust policy for sharing between federation partner locations. A claim contains user information and helps users connect to a partner’s resources. Three types of claims are supported by AD FS:

- **Identity claim** This claim type helps identify the user. The identity claim is included within a security token. A security token can contain up to three identity claims.
- **Group claim** This claim type indicates membership in a group or role.
- **Custom claim** This claim type provides any additional information that needs to be sent. An example might be DepartmentID. This is a custom field and then in turn would be a custom claim. A custom claim can provide any attribute that is located in Active Directory.

Active Directory Lightweight Directory Services

Active Directory Lightweight Directory Services (AD LDS) is a Lightweight Directory Access Protocol (LDAP) directory service. LDAP is an application protocol used for querying and modifying directory services. This type of service allows directory-enabled applications to store and retrieve data without needing the dependencies AD DS requires.

You can understand LDAP by thinking of directory services as something similar to an address book—a set of names (your objects) that you organize in a logical and hierarchical manner (for example, alphabetically). Each name in the address book has an address and phone number (the attributes of your objects) associated with it. LDAP allows you to query or modify this address book.

Installing AD LDS

In Exercise 6.7 we will install AD LDS by using the Server Manager MMC.
Chapter 6 • Configuring Active Directory Server Roles

EXERCISE 6.7

Installing the AD LDS

1. Open the Server Manager MMC by selecting Start > Administrative Tools > Server Manager.
2. In the left pane, click Roles. In the Roles Summary section of the right pane, click Add Roles.
3. On the Select Server Roles screen, click the Active Directory Lightweight Directory Services check box and click Next.
4. On the Introduction To AD LDS screen, click Next.
5. The Confirm Installation Selections screen shows you all the services and roles that you are about to install. Click Install.
Configuring AD LDS

Now that we have installed AD LDS, we have to configure it. We have the ability to configure the following:

Configuring an authentication store Let’s say that you have a web or data server and you want a way to save authorization information for it. It is in this type of situation that configuring an AD LDS authentication store can help you out. AD LDS works well as an authentication store because it can host user account objects even though they are not Windows security principals. You can authenticate Non-Windows security principles by using LDAP simple binds.

Configuring the data within AD LDS Remember, earlier we said that AD LDS is like an address book and you can edit who is in that address book by configuring the data within AD LDS. To configure the data within AD LDS, you can use the ADSI edit snap-in tool.

Migrating to AD LDS What if your company was using an X.500-style directory service that was integrated into your company’s legacy applications and you want to move to AD DS? You can use AD LDS to service the legacy applications while you use Active Directory for the shared security infrastructure.

Windows Server 2008 Hyper-V Windows Server 2008 has a role-based utility called Hyper-V. Hyper-V is a hypervisor-based virtualization feature. (A hypervisor is a virtual machine monitor.) It includes all the necessary features to support machine virtualization. By using machine virtualization, a company can reduce costs, improve server utilization, and create a more dynamic IT infrastructure.

EXERCISE 6.7 (continued)

6. A progress screen will appear for a few minutes.
7. After the installation is finished, click Close.
To configure AD LDS, you need to set up a service instance (or instance for short), which is a single running copy of AD LDS. You can have multiple instances as part of a configuration set. The reason for having multiple instances is load balancing and fault tolerance. This way if one instance becomes unavailable or overloaded, the other instances will pick up the slack.

In Exercise 6.8, we will use the Active Directory Lightweight Directory Services Wizard to set up our first AD LDS instance.

EXERCISE 6.8

Configuring an AD LDS Instance

3. At the Setup Options screen, choose the button labeled A Unique Instance. This option is for a new default instance. (If you choose the button labeled A Replica Of An Existing Instance, you are getting a copy of an instance from another machine.) Click Next.
EXERCISE 6.8 (continued)

4. In the Instance Name screen, type the instance name you want to use and click Next.

5. The Ports screen shows the first available ports on the machine. Whatever ports you choose, make sure that any internal firewalls know these port numbers. After you choose ports (or leave the defaults), click Next.
6. On the Application Directory Partition screen, you need to decide whether you want to create a directory partition (see Chapter 3). If your application (such as Exchange) installs its own partition, choose No, Do Not Create An Application Directory Partition. For this exercise, choose No, Do Not Create An Application Directory Partition and then click Next.

7. In the File Locations screen, you decide where you want to place your database files on your hard drive. For this exercise, leave the defaults and click Next.
8. On the Service Account Selection screen, you need to choose which service account the AD LDS will use. This account has to have administrative rights. Choose Network Service Account and click Next.

9. At the AD LDS Administrators screen, you choose which account will have the right to administer AD LDS. Choose Currently Logged On User and click Next.
Chapter 6 • Configuring Active Directory Server Roles

EXERCISE 6.8 (continued)

10. On the Importing LDIF Files screen, you can choose which LDIF (Lightweight Directory Interchange Format) services that you want to install. For the exercise, we will not install any services. Click Next.

11. In the Ready To Install screen, look over all your choices before continuing. Click Next.

12. After the instance installation is complete, click Finish.

Now that you have created an initial instance, you can create more by choosing Active Directory Lightweight Directory Services Wizard and following the steps in Exercise 6.8 again. Now we are going to discuss the Active Directory Rights Management Services.
Active Directory Rights Management Services

Active Directory Rights Management Services (AD RMS), included with Microsoft Windows Server 2008, allows administrators or users to determine what access (open, read, modify, etc.) they give to other users in an organization. Access restrictions can improve security for email messages, internal websites, and documents.

To secure documents, Microsoft Office 2003 Professional (Word, Excel, PowerPoint, and Outlook) or Microsoft Office 2007 Enterprise, Professional Plus, or Ultimate is required.

You can apply AD RMS usage policy templates directly to confidential information. You can install AD RMS easily using Server Manager, and you can administer it through the MMC snap-in. These three new administrative roles allow for delegation of AD RMS responsibilities:

- AD RMS Enterprise Administrators
- AD RMS Template Administrators
- AD RMS Auditors

AD RMS is integrated with AD FS, which means that two organizations can share information without needing AD RMS installed in both organizations. Some other advantages of using AD RMS include the following:

Self enrollment AD RMS server enrollment allows for the creation and signing of a server licensor certificate (SLC). This SLC gives the AD RMS server the right to issue certificates and licenses whenever they are needed.

Active Directory Metadirectory Service (AD MDS) Microsoft uses an identity management product called Active Directory Metadirectory Service (AD MDS). AD MDS gives systems the tools they need to get identity data from directories and then expose that data through a directory service interface such as LDAP.

AD RMS requires an AD RMS–enabled client. Windows Vista includes the AD RMS client by default. If you are not using Windows Vista or Windows Server 2008, you can download the AD RMS client for previous versions of Windows from Microsoft’s Download Center.

Now that you have a basic understanding of what AD RMS does, let’s take the next step and install AD RMS. In Exercise 6.9, we will install AD RMS by using the Server Manager MMC.
EXERCISE 6.9

Installing the AD RMS

1. Open the Server Manager MMC by selecting Start ➤ Administrative Tools ➤ Server Manager.

2. In the left pane, click Roles. In the Roles Summary section of the right pane, click Add Roles.

3. At the Select Server Roles screen, click the Active Directory Rights Management Services check box. A dialog box will appear stating that additional services need to be installed. Click the Add Required Role Services button. Then click Next.

4. On the Introduction To AD RMS screen, click Next.

5. On the Select Role Services screen, make sure both check boxes (Active Directory Rights Management Server and Identity Federation Support) are checked. Identity Federation Support allows AD RMS to work with AD FS. Click Next.
6. On the Specify Setup Type screen, choose Use This Server To Create A New AD RMS Cluster. (The other choice will not be available because we are installing the first AD RMS server and must start the cluster.) Click Next.

7. AD RMS uses a database to store configuration and policy information. At the Set Up Configuration Database screen, choose Use The Database Engine Built Into Windows. (The other option you have is to use a third-party database engine.) Click Next.
Chapter 6 • Configuring Active Directory Server Roles

EXERCISE 6.9 (continued)

8. On the Specify Service Account screen, you need to choose which service account the AD RMS will use. Choose Network Service Account and click Next. (An AD RMS account will be created to run the services.)

9. At the Set Up Key Management screen, you decide which type of encryption you will use. Choose Use AD RMS Encryption Mechanism and click Next.

10. Next you will be asked to enter a password for AD RMS encryption. The AD RMS cluster key password is used to encrypt the AD RMS cluster key that is stored in the AD RMS database. Type P@ssw0rd, confirm it, and click Next.
11. On the Select Website screen, leave the default and click Next. AD RMS needs to be hosted in IIS. This will set up a default website for AD RMS.

12. In the Specify Cluster Address screen, you choose whether to use a secure or a non-secure website. Choose Use A Secure (https://) Cluster Address and click the Validate button. After the address is verified, click Next.

13. A dialog box appears asking you to put in a friendly name (a name you can use to access the server without knowing the entire UNC path). Leave the default and click Next.

14. In the Set Up Revocation screen, you can enable a revocation key, a third-party key that you can use to revoke licenses. For this exercise we are not going to use any third-party keys. Click Next.
EXERCISE 6.9 (continued)

15. Next, you have the option to register AD RMS now or later. If you register the server now, AD RMS will take effect immediately. If you register the server later, AD RMS will not work until you register. We will not register during this exercise. Choose Register Later and click Next.

16. At the Configure Identity Federation Support screen, you specify the name of the web server that Identity Federation will use. Enter the friendly name from step 13 and click the Validate button. The Next button will become available after the server is validated. Click Next.
In this chapter, we talked about the certificate authority (CA). We explained why you need to use certificates and how to configure them. We discussed how a computer or user gets a certificate through a GPO, autoenrollment, or web enrollment. We then reviewed the steps and reasons for revoking a certificate.

We went on to discuss the Active Directory Domain Service (AD DS) and the advantages of using a read-only domain controller (RODC). After that, we talked about the Active Directory Federation Services (AD FS), which provides Internet-based clients with a secure identity access solution that works on both Windows and non-Windows operating systems.

We continued with Active Directory Lightweight Directory Services (AD LDS), a Lightweight Directory Access Protocol (LDAP) directory service. We discussed how this type of service allows directory-enabled applications to store and retrieve data without needing the dependencies AD DS requires.

EXERCISE 6.9 (continued)

17. At the Introduction To IIS screen, click Next.

18. At the Select Roles Services screen, click Next. This will install all the necessary components for IIS.

19. At the Confirm Installation Selections screen, verify all your settings and click Install.

20. The install progress screen will appear. After the install is complete, click Close.

21. Close the Server Manager MMC.

Summary

In this chapter, we talked about the certificate authority (CA). We explained why you need to use certificates and how to configure them. We discussed how a computer or user gets a certificate through a GPO, autoenrollment, or web enrollment. We then reviewed the steps and reasons for revoking a certificate.

We went on to discuss the Active Directory Domain Service (AD DS) and the advantages of using a read-only domain controller (RODC). After that, we talked about the Active Directory Federation Services (AD FS), which provides Internet-based clients with a secure identity access solution that works on both Windows and non-Windows operating systems.

We continued with Active Directory Lightweight Directory Services (AD LDS), a Lightweight Directory Access Protocol (LDAP) directory service. We discussed how this type of service allows directory-enabled applications to store and retrieve data without needing the dependencies AD DS requires.
Finally, we talked about Active Directory Rights Management Services (AD RMS). We explained that the AD RMS is included with Microsoft Windows Server 2008 and described how it allows administrators or users to determine what access to give other users in an organization.

Exam Essentials

Understand the concepts behind certificate authority. Certificate Authority servers manage certificates. Make sure you understand why companies use certificate servers and how they work.

Understand certificate enrollment. You need to understand the many different ways to issue certificates to users and computers. You also need to understand the differences between installing certificates using GPOs, autoenrollment, and web enrollment.

Be familiar with the uses of read-only domain controllers. Windows Server 2008 has a new type of domain controller called a read-only domain controller (RODC). This gives an organization the ability to install a domain controller in an area or location (on or offsite) that has limited security.

Know when to implement fine-grained password policies. Understand that in Windows Server 2008 you have the ability to have multiple password and account lockout policies. In Microsoft Windows Server 2000 and 2003, when an organization implemented a domain-based password policy, it applied to all users in that domain. Fine-grained password policies allow an organization to have different password and account lockout policies for different sets of users in the same domain.

Understand Active Directory Federation Service. Active Directory Federation Service (AD FS) gives users the ability to do a single sign-on (SSO) and access applications on other networks without needing a secondary password. Organizations can set up trust relationships with other trusted organizations so a user’s digital identity and access rights can be accepted without a secondary password.

Know how to install Active Directory Rights Management Service. Active Directory Rights Management Services (AD RMS), included with Microsoft Windows Server 2008, allows administrators or users to determine what access (open, read, modify, etc.) they give to other users in an organization. This access can be used to secure email messages, internal websites, and documents.

Understand how to configure Active Directory Lightweight Directory Services. You need to know that Active Directory Lightweight Directory Services (AD LDS) is a Lightweight Directory Access Protocol (LDAP) directory service. This type of service allows directory-enabled applications to store and retrieve data without needing the dependencies AD DS requires.
Review Questions

1. Will, the administrator for your organization, has decided to implement certificates for all of your internal users. What type of root certificate authority (CA) would he implement?
 A. Enterprise
 B. Subordinate
 C. Stand Alone
 D. Web CA

2. You are the network administrator for your company. You have decided to implement the Active Directory Federation Services (AD FS). What application do you use to install the Active Directory Domain Services (AD DS)?
 A. Server Manager
 B. System Manager
 C. Dcpromo.exe
 D. Add/Remove Programs

3. You are hired as a contractor for a new organization that has no network currently in place. You decide to implement an Active Directory domain and the Active Directory Domain Services (AD DS). Which of the follow are requirements to install Active Directory?
 A. DNS
 B. DHCP
 C. WINS
 D. RIS

4. You have decided to implement certificate authority (CA) servers and you want all of your users to receive their certificates automatically without any user intervention. What two ways can you accomplish this goal?
 A. Autoenrollment
 B. GPO enrollment
 C. Internet enrollment
 D. Web enrollment

5. Which of the following provides Internet-based clients a secure identity access solution that works on both Windows and non-Windows operating systems?
 A. Active Directory Federation Services (AD FS)
 B. Active Directory Rights Management Service (AD RMS)
 C. Active Directory Lightweight Directory Service (AD LDS)
 D. Active Directory Domain Services (AD DS)
6. You have decided to place DNS on a read-only domain controller (RODC). What type of DNS zone do you now have?
 A. Primary with Active Directory integration
 B. Read-only DNS
 C. Secondary DNS
 D. Stub DNS

7. Which of the following allow administrators to configure services for issuing and managing public key certificates, which help organizations implement network security?
 A. Active Directory Federation Services (AD FS)
 B. Active Directory Rights Management Service (AD RMS)
 C. Active Directory Certificate Services (AD CS)
 D. Active Directory Domain Services (AD DS)

8. What role gives administrators the ability to enroll users into the certificate services program and allows for the issue and management of certificate requests?
 A. Enrollment agents
 B. Certificate agents
 C. Enrollment Admins
 D. Certificate Admins

9. You have decided to implement a certificate authority on your network. You have hired a third-party company to create and issue you the certificates you need to hand out to your Internet users. What type of certificate authority do you need to set up?
 A. Enterprise CA
 B. Enterprise Subordinate CA
 C. Stand-Alone CA
 D. Stand Alone Subordinate CA

10. Alexandria, the network administrator, has just hired a new junior administrator named Paige. Paige needs to be able to recover keys from the certificate authority server. What role does Alexandria need to give Paige so that she can recover keys?
 A. Certificate recovery agent
 B. Certificate admin agent
 C. Key recovery agent
 D. Certificate key admin
11. What file outlines the set of rules that a Federation Service uses to recognize partners, certificates, account stores, claims, and the numerous properties that are associated with the Federation Service?
 A. Trust policy
 B. AD FS rule set
 C. Outline set
 D. Outline policy

12. Which of the following is a Lightweight Directory Access Protocol (LDAP) directory service that allows directory-enabled applications to store and retrieve data without needing the dependencies AD DS requires?
 A. Active Directory Federation Services (AD FS)
 B. Active Directory Rights Management Service (AD RMS)
 C. Active Directory Certificate Services (AD CS)
 D. Active Directory Lightweight Directory Services (AD LDS)

13. You are the administrator of a network. Your company has decided to use server virtualization to help save money and add fault tolerance to your servers. What role-based utility is included with Windows Server 2008 making this possible?
 A. Virtualization-H
 B. Hyper-V
 C. Hyper-Virtualization
 D. Virtualization Manager

14. You are the administrator for a company. Your manager has explained to you that due to security requirements, you need to secure documents and emails using Microsoft Office 2007 Enterprise. What service do you need to install to help secure documents and emails?
 A. Active Directory Federation Services (AD FS)
 B. Active Directory Rights Management Service (AD RMS)
 C. Active Directory Certificate Services (AD CS)
 D. Active Directory Lightweight Directory Services (AD LDS)

15. Your company has one main location and five remote sites. One of the remote sites is having a problem with Active Directory and DNS being hacked into. What two of the following can you use to help solve this problem?
 A. Read-only domain controller
 B. Read-only stub server
 C. Read-only DNS server
 D. Read-only DHCP server
16. Your company has one main location and one remote site. The remote site is 300 miles from
the main location and it has no IT staff on site. What type of domain controller can you install
so that a normal user can have the rights to manage it?
A. Primary domain controller (PDC)
B. Read-only domain controller (RODC)
C. Backup domain controller (BDC)
D. Normal domain controller (DC)

17. You have decided to implement a certificate authority on your network. You have hired a
third-party company to create and issue you the certificates you need to hand out to your internal users. What type of certificate authority do you need to set up?
A. Enterprise CA
B. Enterprise Subordinate CA
C. Stand Alone CA
D. Stand Alone Subordinate CA

18. You are the administrator of a mid-size organization. Your company has decided to install a
certificate authority (CA). After you install the CA, you publish the certificate revocation list
(CRL) to a central location for all CAs to use. What is this central location called?
A. CRL central point
B. CRL distribution location
C. CRL distribution point
D. CRL central location

19. You are an administrator of a mid-size organization. Your company currently uses Windows
Server 2008 domain controllers. Your company wants to use multiple account lockout policies depending on what department people are in. What does Windows Server 2008 offer so that you can do this?
A. Multiple password policy
B. DSA password policy
C. OU password policy
D. Fine-grained password policy

20. You are the administrator for your organization. You have decided to implement certificate
authority servers. You have routers located on your network. What component allows systems to receive a certificate even though they do not have an Active Directory account?
A. Hardware Device Enrollment Service
B. Network Device Enrollment Service
C. Router Enrollment Service
D. Network Hardware Enrollment Service
Answers to Review Questions

1. A. Enterprise Root CAs and Stand Alone Root CAs are the two types of CAs. Enterprise Root CAs (automatically integrated with Active Directory) are the top-most trusted CAs of the hierarchy. They hold the certificates that you issue to the users within your organization. The Stand Alone Root CAs hold the CAs that you issue to Internet users.

2. A. Server Manager is a new Windows Server 2008 feature. Server Manager allows an administrator to install and configure server roles and features and to view information about server configuration.

3. A. DNS is a requirement of Active Directory. You can install DNS before or during the installation of Active Directory. DHCP, WINS, and RIS are all optional (but not required) services that can run on a network.

4. A, B. GPO enrollment automatically issues a certificate to a user through the use of a Group Policy object (GPO). Web enrollment allows users to request certificates and retrieve certificate revocation lists (CRLs) through the use of a web browser. Autoenrollment automatically issues a certificate to a user after either the user or an administrator makes a setting on the user’s computer.

5. A. Active Directory Federation Services (AD FS) provides Internet-based clients a secure identity access solution that works on both Windows and non-Windows operating systems. AD FS also gives users the ability to do a single sign-on (SSO) and access applications on other networks without needing a secondary password.

6. B. When you decide to load DNS on a RODC, that copy of DNS is a read-only copy. The downside to a read-only DNS server is that it will not allow dynamic updates. The benefit is that it can be placed in an non-secure location.

7. C. AD CS allows administrators to configure services for issuing and managing public key certificates. Companies can benefit from AD CS security by combining a private key with an object (such as users and computers), device (such as routers), or service.

8. A. Enrollment agents are administrators who have the ability to enroll users into the certificate services program. Enrollment agents can issue and manage certificate requests.

9. D. CAs that are below the Enterprise and Stand Alone Root CAs in the hierarchy are referred to as Subordinate CAs. The Enterprise or Stand Alone Root CAs give certificates to the Subordinate CAs, which in turn issue certificates to objects and services. The third-party company is the Stand Alone CA and your company would be the Stand Alone Subordinate CA. Stand-alone servers are for issuing certificates to Internet users.

10. C. The key recovery agent is a role (a set of rights) that you can give an individual so that they have the permission to recover a lost or damaged key.

11. A. The trust policy is the file that outlines the set of rules that a Federation Service uses to recognize partners, certificates, account stores, claims, and the numerous properties that are associated with the Federation Service.
12. D. AD LDS is a LDAP directory service. This type of service allows directory-enabled applications to store and retrieve data without needing the dependencies AD DS requires.

13. B. Windows Server 2008 has a role-based utility called Hyper-V. Hyper-V is a hypervisor-based virtualization feature. It includes all the necessary features to support machine virtualization. Using machine virtualization allows a company to reduce costs, to improve server utilization and to create a more-dynamic IT infrastructure.

14. B. AD RMS allows administrators or users to determine what access (open, read, modify, etc.) they give to other users. This access can be used to secure email messages, internal websites, and documents.

15. A, C. Read-only domain controllers allow you to have a non-editable copy of Active Directory in an area that may be a security risk. You can also place a read-only copy of DNS on that server. The other two options do not exist.

16. B. You can give a normal user the administrator role for only a RODC. The user can do any type of maintenance on the RODC without needing to be a domain administrator.

17. B. CAs that are below the Enterprise and Stand Alone Root CAs in the hierarchy are referred to as Subordinate CAs. The Enterprise or Stand Alone Root CAs give certificates to the Subordinate CAs, which in turn issue certificates to objects and services. The third-party company is the Enterprise CA and your company would be the Enterprise Subordinate CA. Enterprise certificate servers issue certificates to internal users.

18. C. When you have a CA, you need to publish your CRL to a shared location. This location is called a CRL distribution point. This gives your CRL a central location for all the certificate servers to share and use.

19. D. New to Windows Server 2008, fine-grained password policies allow an organization to have different password and account lockout policies for different sets of users in the same domain.

20. B. The Network Device Enrollment Service allows network devices (such as routers) to obtain certificates even though they do not have an account in the Active Directory domain.
Chapter 7

Administering Active Directory

MICROSOFT EXAM OBJECTIVES COVERED IN THIS CHAPTER:

✓ Creating and Maintaining Active Directory Objects

- Automate creation of Active Directory accounts. May include but is not limited to: bulk import; Active Directory Migration Tool (ADMT) v3, configure the UPN; create computer, user, and group accounts (scripts, import, migration); template accounts; contacts; distribution lists
- Maintain Active Directory accounts. May include but is not limited to: configure group membership; account resets; delegation; AGDLP/AGGUDLP; deny domain local group; local vs. domain; Protected Admin; disabling accounts vs. deleting accounts; deprovisioning; contacts; creating organizational units (OUs); delegation of control
- Create and apply Group Policy objects (GPOs). May include but is not limited to: enforce, OU hierarchy, block inheritance, and enabling user objects; group policy processing priority; WMI; group policy filtering; group policy loopback (also in Chapter 8)
In the previous chapters, you learned how to install Domain Name System (DNS) and Active Directory, configure server roles, and work with sites, but you still haven’t been introduced to the lower-level objects that exist in Active Directory.

In this chapter, you will look at the structure of the various components within a domain. You’ll see how an organization’s business structure can be mirrored within Active Directory through the use of organizational units (OUs) for ease of use and to create a seamless look and feel. Because the concepts related to OUs are quite simple, some systems administrators may underestimate their importance and not plan to use them accordingly. Make no mistake—one of the fundamental components of a successful Active Directory installation is the proper design and deployment of OUs.

You’ll also see the actual steps you need to take to create common Active Directory objects and then learn how to configure and manage these objects. Finally, you’ll look at ways to publish resources and methods for creating user accounts automatically.

An Overview of OUs

An organizational unit (OU) is a logical group of Active Directory objects, just as its name implies. OUs serve as containers within which other Active Directory objects can be created, but they do not form part of the DNS namespace. They are used solely to create organization within a domain.

OUs can contain the following types of Active Directory objects:

- Users
- Groups
- Computers
- Shared Folder objects
- Contacts
- Printers
- InetOrgPerson objects
- MSMQ Queue Aliases
- Other OUs
Perhaps the most useful feature of OUs is that they can contain other OU objects. As a result, systems administrators can hierarchically group resources and other objects according to business practices. The OU structure is extremely flexible and, as you will see later in this chapter, can easily be rearranged to reflect business reorganizations.

Another advantage to OUs is that each can have its own set of policies. Administrators can create individual and unique Group Policy objects (GPOs) for each OU. GPOs are rules or policies that can apply to all the objects within the OU. (GPOs are discussed in detail in Chapter 8, “Group Policy Objects.”)

Each type of object has its own purpose within the organization of Active Directory domains. Later in this chapter, you’ll look at the specifics of User, Computer, Group, and Shared Folder objects. For now, let’s focus on the purpose and benefits of using OUs.

The Purpose of OUs

OUs are mainly used to organize the objects within Active Directory. Before you dive into the details of OUs, however, you must understand how OUs, users, and groups interact. Most importantly, you should understand that OUs are simply containers that you can use to logically group various objects. They are not, however, groups in the classical sense. That is, they are not used for assigning security permissions. Another way of stating this is that the user accounts, computer accounts, and group accounts that are contained in OUs are considered security principals while the OUs themselves are not.

OUs do not take the place of standard user and group permissions (covered in Chapter 9). A good general practice is to assign users to groups and then place the groups within OUs. This enhances the benefits of setting security permissions and of using the OU hierarchy for making settings. Figure 7.1 illustrates this concept.

Figure 7.1 Relationships of users, groups, and OUs
An OU contains objects only from within the domain in which it resides. As you’ll see in
the section titled “Delegating Administrative Control,” later in this chapter, the OU is the finest
level of granularity used for group policies and other administrative settings.

Benefits of OUs

There are many benefits of using OUs throughout your network environment:

- OUs are the smallest unit to which you can assign directory permissions.
- You can easily change the OU structure, and it is more flexible than the domain structure.
- The OU structure can support many different levels of hierarchy.
- Child objects can inherit OU settings.
- You can set Group Policy settings on OUs.
- You can easily delegate the administration of OUs and the objects within them to the
 appropriate users and groups.

Now that you have a good idea of why you should use OUs, take a look at some general
practices you can use to plan the OU structure.

Planning the OU Structure

One of the key benefits of Active Directory is the way in which it can bring organization to
complex network environments. Before you can begin to implement OUs in various configu-
rations, you must plan a structure that is compatible with business and technical needs. In this
section, you’ll learn about several factors you should consider when planning for the structure
of OUs.

Logical Grouping of Resources

The fundamental purpose of using OUs is to hierarchically group resources that exist within
Active Directory. Fortunately, hierarchical groups are quite intuitive and widely used in most
businesses. For example, a typical manufacturing business might divide its various operations
into different departments like these:

- Sales
- Marketing
- Engineering
- Research and Development
- Support
- Information Technology (IT)
Each of these departments usually has its own goals and missions. In order to make the business competitive, individuals within each of the departments are assigned to various roles. Some types of roles might include the following:

- Managers
- Clerical staff
- Technical staff
- Planners

Each of these roles usually entails specific job responsibilities. For example, managers should provide direction to general staff members. Note that the very nature of these roles suggests that employees may fill many different positions. That is, one employee might be a manager in one department and a member of the technical staff in another. In the modern workplace, such situations are quite common.

All of this information helps you plan how to use OUs. First, the structure of OUs within a given network environment should map well to the business’s needs, including the political and logical structure of the organization, as well as its technical needs. Figure 7.2 shows how a business organization might be mapped to the OU structure within an Active Directory domain.

Figure 7.2 Mapping a business organization to an OU structure
When naming OUs for your organization, you should keep several considerations and limitations in mind:

Keep the names and descriptions simple. The purpose of OUs is to make administering and using resources simple. Therefore, it’s always a good idea to keep the names of your objects simple and descriptive. Sometimes, finding a balance between these two goals can be a challenge. For example, although a printer name like “The LaserJet located near Bob’s cube” might seem descriptive, it is certainly difficult to type. Also, imagine the naming changes that you might have to make if Bob moves (or leaves the company)!

Pay attention to limitations. The maximum length for the name of an OU is 64 characters. In most cases, this should adequately describe the OU. Remember, the name of an OU does not have to uniquely describe the object because the OU is generally referenced only as part of the overall hierarchy. For example, you can choose to create an OU named “IT” within two different parent OUs. Even though the OUs have the same name, users and administrators are able to distinguish between them based on their complete pathname.

Pay attention to the hierarchical consistency. The fundamental basis of an OU structure is its position in a hierarchy. From a design standpoint, this means that you cannot have two OUs with the same name at the same level. However, you can have OUs with the same name at different levels. For example, you could create an OU named “Corporate” within the North America OU and another one within the South America OU. This is because the fully qualified name includes information about the hierarchy. When an administrator tries to access resources in a Corporate OU, they must specify which Corporate OU they mean.

If, for example, you create a North America OU, the Canada OU should logically fit under it. If you decide that you want to separate the North America and Canada OUs into completely different containers, then you might want to use other, more appropriate names. For example, you could change North America to U.S. Users and administrators depend on the hierarchy of OUs within the domain, so make sure that it remains logically consistent.

Based on these considerations, you should have a good idea of how to best organize the OU structure for your domain.

Understanding OU Inheritance

When you rearrange OUs within the structure of Active Directory, you can change several settings. When they are moving and reorganizing OUs, systems administrators must pay careful attention to automatic and unforeseen changes in security permissions and other configuration options. By default, OUs inherit the permissions of their new parent container when they are moved.

By using the built-in tools provided with Windows Server 2008 and Active Directory, you can move or copy OUs only within the same domain.

You cannot use the Active Directory Users And Computers tool to move OUs between domains. To do this, use the Active Directory Migration Tool (ADMT) v3.1. This is one of the many Active Directory support tools.

For more information on this, check out Microsoft’s website at http://go.microsoft.com/fwlink/?LinkID=82740.
Delegating Administrative Control

We already mentioned that OUs are the smallest component within a domain to which administrative permissions and group policies can be assigned by administrators. Now, you’ll take a look at specifically how administrative control is set on OUs.

Delegation occurs when a higher security authority assigns permissions to a lesser security authority. As a real-world example, assume that you are the director of IT for a large organization. Instead of doing all of the work yourself, you would probably assign roles and responsibilities to other individuals. For example, if you worked within a multidomain environment, you might make one systems administrator responsible for all operations within the Sales domain and another responsible for the Engineering domain. Similarly, you could assign the permissions for managing all printers and print queues objects within your organization to one individual user while allowing another individual user to manage all security permissions for users and groups.

In this way, you can distribute the various roles and responsibilities of the IT staff throughout the organization. Businesses generally have a division of labor that handles all of the tasks involved in keeping the company’s networks humming. Network operating systems (NOSs), however, often make it difficult to assign just the right permissions, or in other words, do not support very granular permission assignments. Sometimes, fine granularity is necessary to ensure that only the right permissions are assigned. A good general rule of thumb is to provide users and administrators the minimum permissions they require to do their jobs. This way you can ensure that accidental, malicious, and otherwise unwanted changes do not occur.

You can use auditing to log events to the Security Log in the Event Viewer. This is a way to ensure that if accidental, malicious, and otherwise unwanted changes do occur, they are logged and traceable.

In the world of Active Directory, you use the process of delegation to define responsibilities for OU administrators. As a system administrator, you will be occasionally tasked with having to delegate responsibility to others—you can’t do it all, although sometimes some administrators believe that they can. We understand the old IT logic of doing all the tasks yourself for job security, but this can actually make you look worse and not better.

You can delegate control only at the OU level and not at the object level within the OU.

If you do find yourself in a role to delegate, remember that Windows Server 2008 was designed to offer you the ability to do so. In its simplest definition, delegation allows a higher administrative authority to grant specific administrative rights for containers and subtrees to individuals and groups. What this essentially does is eliminate the need for domain administrators with sweeping authority over large segments of the user population. You can break up this control over branches within your tree, within each OU you create.
To understand delegation and rights, you should first understand the concept of access control entries (ACEs). ACEs grant specific administrative rights on objects in a container to a user or group. The containers’ access control list (ACL) is used to store ACEs.

When you are considering implementing delegation, keep these two main concerns in mind:

Parent-child relationships The OU hierarchy you create will be very important when you consider the maintainability of security permissions. OUs can exist in a parent-child relationship, which means that permissions and group policies set on OUs higher up in the hierarchy (parents) can interact with objects in lower-level OUs (children). When it comes to delegating permissions, this is extremely important. You can allow child containers to automatically inherit the permissions set on parent containers. For example, if the North America division of your organization contains 12 other OUs, you could delegate permissions to all of them at once (saving time, and reducing the likelihood of human error) by placing security permissions on the North America division. This feature can greatly ease administration, especially in larger organizations, but it is also a reminder of the importance of properly planning the OU structure within a domain.

Inheritance settings Now that you’ve seen how you can use parent-child relationships for administration, you should consider inheritance, the process in which child objects take on the permissions of a parent container. When you set permissions on a parent container, all of the child objects are configured to inherit the same permissions. You can override this behavior, however, if business rules do not lend themselves well to inheritance.

Applying Group Policies

One of the strengths of the Windows operating system is that it offers users a great deal of power and flexibility. From installing new software to adding device drivers, users can make many changes to their workstation configurations. However, this level of flexibility is also a potential problem. For instance, inexperienced users might inadvertently change settings, causing problems that can require many hours to fix.

In many cases (and especially in business environments), users only require a subset of the complete functionality the operating system provides. In the past, however, the difficulty associated with implementing and managing security and policy settings has led to lax security policies. Some of the reasons for this are technical—it can be very tedious and difficult to implement and manage security restrictions. Other problems have been political—users and management might feel that they should have full permissions on their local machines, despite the potential problems this might cause.

That’s where the idea of group policies comes in. Simply defined, *group policies* are collections of permissions that you can apply to objects within Active Directory. Specifically, Group Policy settings are assigned at the site, domain, and OU levels, and they can apply to user
accounts, computer accounts, and groups. Examples of settings that a systems administrator can make using group policies include the following:

- Restricting users from installing new programs
- Disallowing the use of Control Panel
- Limiting choices for display and Desktop settings

Chapter 8 covers the technical issues related to group policies.

Creating OUs

Now that you have looked at several different ways in which OUs can be used to bring organization to the objects within Active Directory, it’s time to look at how you can create and manage them.

Through the use of the Active Directory Users And Computers administrative tool, also called the MMC (Microsoft Management Console), you can quickly and easily add, move, and change OUs. This graphical tool makes it easy to visualize and create the various levels of hierarchy an organization requires.

Figure 7.3 shows a geographically based OU structure that a multinational company might use. Note that the organization is based in North America and it has a corporate office located there. In general, the other offices are much smaller than the corporate office located in North America.

FIGURE 7.3 A geographically based OU structure
Chapter 7 • Administering Active Directory

It’s important to note that this OU structure could have been designed in several different ways. For example, we could have chosen to group all of the offices located in the United States within an OU named “U.S.” However, due to the large size of these offices, we chose to place these objects at the same level as the Canada and Mexico OUs. This prevents an unnecessarily deep OU hierarchy while still logically grouping the offices.

Exercise 7.1 walks you through the process of creating several OUs for a multinational business. You’ll be using this OU structure in later exercises within this chapter.

NOTE
In order to perform the exercises included in this chapter, you must have administrative access to a Windows Server 2008 domain controller.

EXERCISE 7.1
Creating an OU Structure

1. Open the Active Directory Users And Computers administrative tool.

2. Right-click the name of the local domain, and choose New Organizational Unit. You will see the dialog box shown in the following graphic. Notice that this box shows you the current context within which the OU will be created. In this case, you’re creating a top-level OU, so the full path is simply the name of the domain.

3. Type North America for the name of the first OU. Uncheck the box that states Protect Container From Accidental Deletion and click OK to create this object.

4. Create the following top-level OUs by right-clicking the name of the domain and choosing New Organizational Unit. Also make sure to uncheck Protect Container From Accidental Deletion for all OUs in these labs, because you’ll be deleting some of these OUs in later exercises.

 Africa

 Asia
Europe

South America

Note that the order in which you create the OUs is not important. In this exercise, you are simply using a method that emphasizes the hierarchical relationship.

5. Create the following second-level OUs within the North America OU by right-clicking the North America OU and selecting New > Organizational Unit:
 - Austin
 - Boston
 - Canada
 - Chicago
 - Corporate
 - Los Angeles
 - Mexico
 - New York
 - San Francisco

6. Create the following OUs under the Asia OU:
 - China
 - India
 - Malaysia
 - Vietnam

7. Create the following OUs under the Europe OU:
 - France
 - Germany
 - Spain
 - UK

8. Create the following OUs under the South America OU:
 - Argentina
 - Brazil
 - Chile
 - Peru
Managing OUs

Managing network environments would still be challenging even if things rarely changed. However, in the real world, business units, departments, and employee roles change frequently. As business and technical needs change, so should the structure of Active Directory.
Fortunately, changing the structure of OUs within a domain is a relatively simple process. In the following sections, you’ll look at ways to delegate control of OUs and make other changes.

Moving, Deleting, and Renaming OUs

The process of moving, deleting, and renaming OUs is a simple one. Exercise 7.2 shows how you can easily change and reorganize OUs to reflect changes in the business organization. The specific scenario covered in this exercise includes the following changes:

- The Research and Engineering departments have been combined to form a department known as Research and Development (RD).
- The Sales department has been moved from the Corporate office to the New York office.
- The Marketing department has been moved from the Corporate office to the Chicago office.

This exercise assumes that you have already completed the steps in Exercise 7.1.

EXERCISE 7.2

Modifying OU Structure

1. Open the Active Directory Users And Computers administrative tool.
2. Right-click the Engineering OU (located within North America > Corporate) and click Delete. When you are prompted for confirmation, click Yes. Note that if this OU contained objects, they all have been automatically deleted as well.
3. Right-click the Research OU and select Rename. Type RD to change the name of the OU and press Enter.
4. Right-click the Sales OU and select Move. In the Move dialog box, expand the North America branch and click the New York OU. Click OK to move the OU.
Administering Properties of OUs

Although OUs are primarily created for organizational purposes within the Active Directory environment, they have several settings that you can modify. To modify the properties of an OU using the Active Directory Users And Computers administrative tool, right-click the name of any OU and select Properties; when you do, the OU Properties dialog box appears. In the example shown in Figure 7.4, you see the options on the General tab.

In any organization, it helps to know who is responsible for managing an OU. You can set this information on the Managed By tab (see Figure 7.5). The information specified on this tab is very convenient because it is automatically pulled from the contact information on a user record. You should consider always having a contact for each OU within your organization so that users and other systems administrators know whom to contact if they need to make any changes.
Delegating Control of OUs

In simple environments, one or a few systems administrators may be responsible for managing all of the settings within Active Directory. For example, a single systems administrator could manage all users within all OUs in the environment. In larger organizations, however, roles and responsibilities may be divided among many different individuals. A typical situation is
one in which a systems administrator is responsible for objects within only a few OUs in an Active Directory domain. Or, one systems administrator might manage User and Group objects while another is responsible for managing file and print services. Fortunately, using the Active Directory Users And Computers tool, you can quickly and easily ensure that specific users receive only the permissions they need. In Exercise 7.3, you will use the Delegation of Control Wizard to assign permissions to individuals. In order to successfully complete these steps, you must first have created the objects in the previous exercises of this chapter.

EXERCISE 7.3

Using the Delegation of Control Wizard

1. Open the Active Directory Users And Computers administrative tool.

2. Right-click the Corporate OU within the North America OU and select Delegate Control. This starts the Delegation of Control Wizard. Click Next to begin configuring security settings.

3. In the Users Or Groups page, click the Add button. In the Enter The Object Names To Select field, enter Account Operators and press Enter. Click Next to continue.

4. In the Tasks To Delegate page, select Delegate The Following Common Tasks and place a check mark next to the following items:
 - Create, Delete, And Manage User Accounts
 - Reset User Passwords And Force Password Change At Next Logon
 - Read All User Information
 - Create, Delete, And Manage Groups
 - Modify The Membership Of A Group

 Click Next to continue.
Managing OUs

Although the common tasks available through the wizard are sufficient for many delegation operations, you may have cases in which you want more control. For example, you might want to give a particular systems administrator permissions to modify only Computer objects. Exercise 7.4 uses the Delegation of Control Wizard to assign more granular permissions. In order to successfully complete these steps, you must first have completed the previous exercises in this chapter.

EXERCISE 7.3 (continued)

5. The Completing The Delegation of Control Wizard page then provides a summary of the operations you have selected. To implement the changes, click Finish.

Although the common tasks available through the wizard are sufficient for many delegation operations, you may have cases in which you want more control. For example, you might want to give a particular systems administrator permissions to modify only Computer objects. Exercise 7.4 uses the Delegation of Control Wizard to assign more granular permissions. In order to successfully complete these steps, you must first have completed the previous exercises in this chapter.

EXERCISE 7.4

Delegating Custom Tasks

1. Open the Active Directory Users And Computers administrative tool.

2. Right-click the Corporate OU within the North America OU and select Delegate Control. This starts the Delegation of Control Wizard. Click Next to begin making security settings.

3. In the Users Or Groups page, click the Add button. In the Enter The Object Names To Select field, enter Server Operators and press Enter. Click Next to continue.

4. In the Tasks To Delegate page, select the Create A Custom Task To Delegate radio button, and click Next to continue.

5. In the Active Directory Object Type page, choose Only The Following Objects In The Folder, and place a check mark next to the following items (you will have to scroll down to see them all):

 - User Objects
 - Computer Objects
 - Contact Objects
Group Objects
Organizational Unit Objects
Printer Objects

Click Next to continue.

6. In the Permissions page, place a check mark next to the General option and make sure the other options are not checked. Note that if the various objects within your Active Directory schema had property-specific settings, you would see those options here. Place a check mark next to the following items:

Create All Child Objects
Read All Properties
Write All Properties

This gives the members of the Server Operators group the ability to create new objects within the Corporate OU and the permissions to read and write all properties for these objects. Click Next to continue.
Managing OUs

7. Click Next to continue.

8. The Completing The Delegation of Control Wizard page provides a summary of the operations you have selected. To implement the changes, click Finish.

Real World Scenario

Delegation: Who’s Responsible for What?

You’re the IT director for a large, multinational organization. You’ve been with the company for quite a while—since the environment had only a handful of offices and a few network and systems administrators. But times have changed. Systems administrators must now coordinate the efforts of hundreds of IT staffers in 14 countries.

When the environment ran under a Windows NT 4 domain environment, the network was set up with many domains. For security, performance, and distribution of administration reasons, the computing resources in each major office were placed in their own domain. You have recently decided to move to Active Directory and to consolidate the numerous Windows NT domains into a single Active Directory domain. However, securely administering a distributed environment is still an important concern. So, the challenge involves determining how to coordinate the efforts of different systems administrators.

Fortunately, through the proper use of OUs and delegation, you are given a lot of flexibility in determining how to handle the administration. You can structure the administration in several ways. First, if you choose to create OUs based on geographic business structure, you could delegate control of these OUs based on the job functions of various systems administrators. For example, you could use one user account to administer the Europe OU. Within the Europe OU, this systems administrator could delegate permissions to the lower OUs containing the Paris and London OUs. Within these OUs, you could further break down the administrative responsibilities for printer queue operators and security administrators.

Alternatively, the OU structure may create a functional representation of the business. For example, the Engineering OU might contain other OUs that are based on office locations such as New York and Paris. A systems administrator of the Engineering domain could delegate permissions based on geography or job functions to the lower OUs. Regardless of whether you build a departmental, functional, or geographical OU model, keep in mind that each model excludes other models. This is one of the most important decisions you need to make. When you are making this decision or modifying previous decisions, your overriding concern is how it will affect the management and administration of the network. The good news is that because Active Directory has so many features, the model you choose can be based on specific business requirements rather than imposed by architectural constraints.
Troubleshooting OUs

In general, you should find using OUs to be straightforward and relatively painless. With adequate planning, you'll be able to implement an intuitive and useful structure for OU objects. The most common problems with OU configuration are related to the OU structure. When troubleshooting OUs, pay careful attention to the following factors:

Inheritance By default, Group Policy and other settings are transferred automatically from parent OUs to child OUs and objects. Even if a specific OU is not given a set of permissions, objects within that OU might still get them from parent objects.

Delegation of administration If you allow the wrong user accounts or groups to perform specific tasks on OUs, you might be violating your company's security policy. Be sure to verify the delegations you have made at each OU level.

Organizational issues Sometimes, business practices do not easily map to the structure of Active Directory. A few misplaced OUs, user accounts, computer accounts, or groups can make administration difficult or inaccurate. In many cases, it might be beneficial to rearrange the OU structure to accommodate any changes in the business organization. In others, it might make more sense to change business processes.

If you regularly consider each of these issues when troubleshooting problems with OUs, you will be much less likely to make errors in the Active Directory configuration.

Creating and Managing Active Directory Objects

Now that you are familiar with the task of creating OUs, you should find creating and managing other Active Directory objects quite simple. The following sections look at the details.

Overview of Active Directory Objects

When you install and configure a domain controller, Active Directory sets up some organization for you, and you can create and manage several types of objects. This section describes these features.

Active Directory Organization

By default, after you install and configure a domain controller, you will see the following organizational sections within the Active Directory Users And Computers tool (they look like folders):

Built-In The Built-In container includes all of the standard groups that are installed by default when you promote a domain controller. You can use these groups to administer the
servers in your environment. Examples include the Administrators group, Backup Operators, and Print Operators.

Computers By default, the Computers container contains a list of the workstations in your domain. From here, you can manage all of the computers in your domain.

Domain Controllers The Domain Controllers container includes a list of all of the domain controllers for the domain.

Foreign security principals *Foreign security principals* are any objects to which security can be assigned and that are not part of the current domain. *Security principals* are Active Directory objects to which permissions can be applied, and they can be used to manage permissions in Active Directory.

Users The Users container includes all of the security accounts that are part of the domain. When you first install the domain controller, there will be several groups in this container. For example, the Domain Admins group and the Administrator account are created in this container.

Active Directory Objects

You can create and manage several different types of Active Directory objects. The following are specific object types:

Computer Computer objects represent workstations that are part of the Active Directory domain. All computers within a domain share the same security database, including user and group information. Computer objects are useful for managing security permissions and enforcing Group Policy restrictions.

Contact *Contact objects* are usually used in OUs to specify the main administrative contact. Contacts are not security principals like users. They are used to specify information about individuals within the organization.

Group *Group objects* are logical collections of users primarily for assigning security permissions to resources. When managing users, you should place them into groups and then assign permissions to the group. This allows for flexible management without the need to set permissions for individual users.

Organizational Unit An OU object is created to build a hierarchy within the Active Directory domain. It is the smallest unit that can be used to create administrative groupings, and it can be used to assign group policies. Generally, the OU structure within a domain reflects a company’s business organization.

Printer *Printer objects* map to printers.

Shared Folder *Shared Folder objects* map to server shares. They are used to organize the various file resources that may be available on file/print servers. Often, Shared Folder objects are used to give logical names to specific file collections. For example, systems administrators might create separate shared folders for common applications, user data, and shared public files.
User A User object is the fundamental security principal on which Active Directory is based. User accounts contain information about individuals, as well as password and other permission information.

InetOrgPerson The InetOrgPerson object is an Active Directory object that defines attributes of users in Lightweight Directory Access Protocol (LDAP) and X.500 directories.

MSMQ Queue Alias An MSMQ Queue Alias object is an Active Directory object for the MSMQ-Custom-Recipient class type. The MSMQ (Microsoft Message Queuing) Queue Alias object associates an Active Directory path and a user-defined alias with a public, private, or direct single-element format name. This allows a queue alias to be used to reference a queue that might not be listed in Active Directory Domain Services (AD DS).

Creating Objects Using the Active Directory Users And Computers Tool

Exercise 7.5 walks you through the steps you need to take to create various objects within an Active Directory domain. In this exercise, you create some basic Active Directory objects. In order to complete this exercise, you must have access to at least one Active Directory domain controller and you should have also completed the previous exercises in this chapter.

EXERCISE 7.5

Creating Active Directory Objects

1. Open the Active Directory Users And Computers tool.

2. Expand the current domain to list the objects currently contained within it. For this exercise you will use the second- and third-level OUs contained within the North America top-level OU, as shown in the following graphic.
3. Right-click the Corporate OU, and select New ➔ User. Fill in the following information:

 First Name: Maria

 Initial: D

 Last Name: President

 Full Name: (leave as default)

 User Logon Name: mdpresident (leave default domain)

 Click Next to continue.

4. Enter in “P@ssw0rd” for the password for this user, and then confirm it. Note that you can also make changes to password settings here. Click Next.
EXERCISE 7.5 (continued)

5. You will see a summary of the user information. Click Finish to create the new user.

6. Click on the RD container and create another user in that container with the following information:

 First Name: **John**

 Initials: Q

 Last Name: **Admin**

 Full Name: (leave as default)

 User Logon Name: **jqadmin** (leave default domain)

 Click Next to continue.

7. Assign the password “**P@ssw0rd**”. Click Next, and then click Finish to create the user.

8. Right-click the RD OU, and select New ➔ Contact. Use the following information to fill in the properties of the Contact object:

 First Name: **Jane**

 Initials: R

 Last Name: **Admin**

 Display Name: **jradmin**

 Click OK to create the new Contact object.
9. Right-click the RD OU, and select New ➤ Shared Folder. Enter Software for the name and \server1\applications for the network path (also known as the Universal Naming Convention [UNC] path). Note that you can create the object even though this resource (the physical server) does not exist. Click OK to create the Shared Folder object.

10. Right-click the HR OU, and select New ➤ Group. Type All Users for the group name. Do not change the value in the Group Name (Pre–Windows 2000) field. For the Group Scope, select Global, and for the Group Type, select Security. To create the group, click OK.
Chapter 7 • Administering Active Directory

EXERCISE 7.5 (continued)

11. Right-click the Sales OU and select New > Computer. Type Workstation1 for the name of the computer. Notice that the pre–Windows 2000 name is automatically populated and that, by default, the members of the Domain Admins group are the only ones that can add this computer to the domain. Place a check mark in the Assign This Computer Account As A Pre–Windows 2000 Computer box, and then click OK to create the Computer object.

Importing Objects from a File
In Exercise 7.5 we created an account using the Active Directory Users And Computers tools. But what if we needed to bulk import accounts? There are two main applications for doing bulk imports of accounts: the ldifde.exe utility and the csvde.exe utility. Both utilities import accounts from files.

The ldifde utility imports from line-delimited files. This utility allows an administrator to export and import data, thus allowing batch operations like Add, Modify, and Delete to be performed in Active Directory. Windows Server 2008 includes ldifde.exe to help support batch operations.

csvde.exe performs the same export functions as ldifde.exe, but csvde.exe uses a comma-separated file format. The csvde.exe utility does not allow administrators to modify or delete objects. It only supports adding objects to Active Directory.

Active Directory Migration Tool (ADMT) v3
Another tool you can use to help import and migrate users is the Active Directory Migration Tool (ADMT) v3. The ADMT v3 allows an administrator to migrate users, groups, and computers from a Microsoft Windows NT 4.0 domain to a Windows Server 2008 Active Directory domain.

Administrators can also use the ADMT v3 to migrate users, groups, and computers between Active Directory domains in different forests (interforest migration) and between Active Directory domains in the same forest (intraforest migration).
ADMT v3 also helps administrators perform security translations from a Windows NT 4.0 domain to a Windows Server 2008 Active Directory domain. ADMT v3 will also allow the security translations between Active Directory domains in different forests.

Managing Object Properties

Once you’ve created the necessary Active Directory objects, you’ll probably need to make changes to their default properties. In addition to the settings you made when you were creating Active Directory objects, you can configure several more properties. In addition, you can access object properties by right-clicking any object and selecting Properties from the pop-up menu. Each object type contains a unique set of properties.

User Object Properties

The following list describes some of the properties of a user object.

- General: General account information about this user
- Address: Physical location information about this user
- Account: User logon name and other account restrictions, such as workstation restrictions and logon hours
- Profile: Information about the user’s roaming profile settings
- Telephones: Telephone contact information for the user
- Organization: The user’s title, department, and company information
- Member Of: Group membership information for the user
- Dial-In: Remote Access Service (RAS) permissions for the user
- Environment: Logon and other network settings for the user
- Sessions: Session limits, including maximum session time and idle session settings
- Remote Control: Remote control options for this user’s session
- Terminal Services Profile: Information about the user’s profile for use with Terminal Services
- COM+: Specifies a COM+ partition set for the user

Computer Object Properties

Computer objects have different properties than user objects. Computer objects refer to the systems that clients are operating to be part of a domain. The following list describes some computer object properties.

- General: Information about the name of the computer, the role of the computer, and its description
 You can enable an option to allow the Local System Account of this machine to request services from other servers. This is useful if the machine is a trusted and secure computer.
- Operating System: The name, version, and service pack information for the operating system running on the computer
Chapter 7 • Administering Active Directory

- Member Of: Active Directory groups that this Computer object is a member of
- Location: A description of the computer’s physical location
- Managed By: Information about the User or Contact object that is responsible for managing this computer
- Dial-in: Sets dial-in options for the computer

Setting Properties for Active Directory Objects

Now that you have seen the various properties that can be set for the Active Directory objects, let’s go through an exercise on how to configure some of these properties.

Exercise 7.6 walks you through how to set various properties for Active Directory objects. In order to complete the steps in this exercise, you must have first completed Exercise 7.5.

Although it may seem somewhat tedious, it’s always a good idea to enter as much information as you know about Active Directory objects when you create them. Although the name Printer1 may be meaningful to you, users will appreciate the additional information when they are searching for objects.

EXERCISE 7.6

Managing Object Properties

1. Open the Active Directory Users And Computers tool.
2. Expand the name of the domain, and select the RD container. Right-click the John Q. Admin user account, and select Properties.
3. Here, you will see the various Properties tabs for the User account. Make some configuration changes based on your personal preferences. Click OK to continue.
4. Select the HR OU. Right-click the All Users group, and click Properties. In the All Users Properties dialog box, you will be able to modify the membership of the group. Click the Members tab, and then click Add. Add the Maria D. President and John Q. Admin User accounts to the Group. Click OK to save the settings and then OK to accept the group modifications.

5. Select the Sales OU. Right-click the Workstation1 Computer object. Notice that you can choose to disable the account or reset it (to allow another computer to join the domain under that same name). From the right-click menu, choose Properties. You’ll see the properties for the Computer object.

Examine the various options and make changes based on your personal preference. After you have examined the available options, click OK to continue.
By now, you have probably noticed that Active Directory objects have a lot of common options. For example, Group and Computer objects both have a Managed By tab. Windows Server 2008 allows you to manage many user objects at once. For instance, you can select several user objects by holding down the Shift or Ctrl key while selecting. You can then right-click any one of the selected objects and select Properties to display the properties that are available for multiple users. Notice that not every user property is available, because some properties are unique to each user. You can configure the description field for multiple object selections that include both users and non-users, such as computers and groups.

A very important thing to think about when it comes to accounts is the difference between disabling an account and deleting an account. When you delete an account, the Security ID (SID) gets deleted. Even if you later create an account with the same username, it will have a different SID number and therefore, it will be a different account.

It is sometime better to disable an account and place it into a non-active OU called Disabled. This way if you ever need to re-access the account, you can do so.

Another object management task is the process of deprovisioning. Deprovisioning is managing Active Directory objects in the connector space (discussed in Chapter 6, “Configuring Server Roles”). To learn more about deprovisioning, visit Microsoft’s website.

As was mentioned earlier, it’s always a good idea to enter in as much information as possible about an object. This allows systems administrators and users alike to get the most out of Active Directory and its properties.

Understanding Groups

Now that you know how to create user accounts, it’s time to learn how to create group accounts. As instructors, we are always amazed when students (who work in the IT field) have no idea why they should use groups. This is something every organization should be using.

To illustrate their usefulness, let’s say we have a Sales department user by the name of wpanek. Our organization has 100 resources shared on the network for users to access.
Because wpanken is part of the Sales department, he has access to 50 of the resources. The other 50 are used by the Marketing department. If the organization is not using groups, and wpanken moves from Sales to Marketing, how many changes do we have to make? The answer is 100. We have to move him out of the 50 resources he currently can use and place his account in the 50 new resources that he now needs.

Now, let’s say that we use groups. The Sales group has access to 50 resources and the Marketing group has access to the other 50. If wpanken moves from Sales to Marketing, we only need to make two changes. We just have to take wpanken out of the Sales group and place him in the Marketing group; after this is done wpanken can access everything he needs to do his job.

Group Properties

Now that you understand why you should use groups, let’s go over setting up groups and their properties. When you are creating groups, it helps to understand some of the options that you need to use.

Group Type

You can choose from two group types—Security groups and Distribution groups.

- Security groups can have rights and permissions placed on them. For example, if you wanted to give a certain group of users access to a particular printer, but you wanted to control what they were allowed to do with this printer, you’d create a Security group and then apply certain rights and permissions to this group.

- Security groups can also receive emails. If someone sent an email to the group, all users within that group would receive it.

- Distribution groups are used for email only. You cannot place permissions and rights for objects on this group type.

Group Scope

When it comes to group scopes, your choices depend on what domain functional level (discussed in Chapter 3, “Active Directory Planning and Installation”) you are working with. If you are in Native mode (Windows 2000 Native, 2003, or 2008) you will have three choices:

- **Domain local groups** Domain local groups are groups that remain in the domain in which they were created. You use these groups to grant permissions within a single domain. For example, if you create a domain local group named HPLaser, you cannot use that group in any other domain and it has to reside in the domain in which you created it.

- **Global group** Global groups can contain other groups and accounts from the domain in which the group is created. In addition, you can give them permissions in any domain in the forest.

- **Universal groups** Universal groups can include other groups and accounts from any domain in the domain tree or forest. You can give universal groups permissions in any domain in the domain tree or forest.

You can create domain local groups in domain Mixed or Native modes.

You can create universal groups only if you are in a domain Native mode.
Creating Group Strategies

When you are creating a group strategy, think of this acronym that Microsoft likes to use during the exam: AGDLP (or AGLP). This acronym stands for a series of actions you should perform. It always applies in Mixed mode and you can also apply it in Native mode. Here is how it expands:

A = Accounts (Create your user accounts.)
G = Global groups (Put user accounts into global groups.)
DL = Domain local groups (Put global groups into domain local groups.)
P = Permissions (Assign permissions like Deny or Apply on the domain local group.)

Another acronym that stands for a strategy you can use is AUDLP (or AULP). This is always used in native mode. Here is how it expands:

A = Accounts (Create your user accounts.)
U = Universal groups (Put the user accounts into universal groups.)
DL = Domain local groups (Put universal groups into domain local groups.)
P = Permissions (Place permissions on the local group.)

Creating a Group

To create a new group, open the Active Directory Users And Computers snap-in. Click the OU where the group is going to reside. Right-click and choose New and then Group. After you create the group, just click the Members tab and choose Add. Add the users that you want to reside in that group, and that’s all there is to it.

Filtering and Advanced Active Directory Features

The Active Directory Users And Computers tool has a couple of other features that come in quite handy when you are managing many objects. You can access the Filter Options dialog box by clicking the View menu in the MMC and choosing Filter Options. You’ll see a dialog box similar to the one shown in Figure 7.6. Here, you can choose to filter objects by their specific types within the display. For example, if you are an administrator who works primarily with user accounts and groups, you can select those specific items by placing check marks in the list. In addition, you can create more complex filters by choosing Create Custom. Doing so provides you with an interface that looks similar to that of the Find command.

Another option in the Active Directory Users And Computers tool is to view Advanced options. You can enable the Advanced options by choosing Advanced Features in the View menu. This adds two top-level folders to the list under the name of the domain.

The System folder (shown in Figure 7.7) provides additional features that you can configure to work with Active Directory. You can configure settings for the Distributed File System (DFS), IP Security (IPSec) policies, the File Replication Service (FRS), and more. In addition to the System folder, you’ll see the LostAndFound folder. This folder contains any files that may not have been replicated properly between domain controllers. You should check this folder periodically for any files so that you can decide whether you need to move them or copy them to other locations.
As you can see, managing Active Directory objects is generally a simple task. The Active Directory Users And Computers tool allows you to configure several objects. Let’s move on to look at one more common administration function—moving objects.
Moving, Renaming, and Deleting Active Directory Objects

One of the extremely useful features of the Active Directory Users And Computers tool is its ability to easily move users and resources.

Exercise 7.7 walks you through the process of moving Active Directory objects. In this exercise, you will make several changes to the organization of Active Directory objects. In order to complete this exercise, you must have first completed Exercise 7.5.

EXERCISE 7.7

Moving Active Directory Objects

1. Open the Active Directory Users And Computers tool, and expand the name of the domain.

2. Select the Sales OU (Under the New York OU), right-click Workstation1, and select Move. A dialog box appears. Select the RD OU, and click OK to move the Computer object to that container.

3. Click the RD OU, and verify that Workstation1 was moved.

In addition to moving objects within Active Directory, you can also easily rename them by right-clicking an object and selecting Rename. Note that this option does not apply to all objects. For example, in order to prevent security breaches, Computer objects cannot be renamed.

You can remove objects from Active Directory by right-clicking them and choosing Delete.
Deleting an Active Directory object is an irreversible action. When an object is destroyed, any security permissions or other settings made for that object are removed as well. Because each object within Active Directory contains its own security identifier (SID), simply re-creating an object with the same name does not place any permissions on it. Before you delete an Active Directory object, be sure that you will never need it again.

Windows Server 2008 has a check box, “Protect container from accidental deletion,” for all OUs. If this check box is checked, to delete or move an OU, you must go into the Active Directory Users And Computers Advanced options. Once you are in Advanced options, you can uncheck the box to move or delete the OU.

Resetting an Existing Computer Account

Every computer on the domain establishes a discrete channel of communication with the domain controller at logon time. The domain controller stores a randomly selected password (different from the user password) for authentication across the channel. The password is updated every 30 days.

Sometimes the computer’s password and the domain controller’s password don’t match, and communication between the two machines fails. Without the ability to reset the computer account, you wouldn’t be able to connect the machine to the domain. Fortunately, you can use the Active Directory Users And Computers tool to reestablish the connection.

Exercise 7.8 shows you how to reset an existing computer account. You should have completed the previous exercises in this chapter before you begin this exercise.

EXERCISE 7.8

Resetting an Existing Computer Account

1. Open the Active Directory Users And Computers tool and expand the name of the domain.
2. Click the RD OU, and then right-click the Workstation1 computer account.
3. Select Reset Account from the context menu. Click Yes to confirm your selection. Click OK at the success prompt.
4. When you reset the account, you break the connection between the computer and the domain, so after performing this exercise, reconnect the computer if you want it to continue working on the network.
Chapter 7 • Administering Active Directory

Publishing Active Directory Objects

One of the main goals of Active Directory is to make resources easy to find. Two of the most commonly used resources in a networked environment are server file shares and printers. These are so common, in fact, that most organizations have dedicated file and print servers. When it comes to managing these types of resources, Active Directory makes it easy to determine which files and printers are available to users.

With that said, take a look at how Active Directory manages to publish shared folders and printers.

Making Active Directory Objects Available to Users

An important aspect of managing Active Directory objects is that a systems administrator can control which objects users can see. The act of making an Active Directory object available is known as **publishing**. The two main publishable objects are Printer objects and Shared Folder objects.

The general process for creating server shares and shared printers has remained unchanged from previous versions of Windows: You create the various objects (a printer or a file system folder) and then enable them for sharing.

To make these resources available via Active Directory, however, there’s an additional step: You must publish the resources. Once an object has been published in Active Directory, clients will be able to use it.

You can also publish Windows NT 4 resources through Active Directory by creating Active Directory objects as you did in Exercise 7.5. When you publish objects in Active Directory, you should know the server name and share name of the resource. When system administrators use Active Directory objects, they can change the resource to which the object points without having to reconfigure or even notify clients. For example, if you move a share from one server to another, all you need to do is update the Shared Folder object’s properties to point to the new location. Active Directory clients still refer to the resource with the same path and name as they used before.

Without Active Directory, Windows NT 4 shares and printers are accessible only by using NetBIOS-based shares. If you’re planning to disable the NetBIOS protocol in your environment, you must be sure that these resources have been published or they will not be accessible.

Publishing Printers

Printers can be published easily within Active Directory. This makes them available to users in your domain.

Exercise 7.9 walks you through the steps you need to take to share and publish a Printer object by having you create and share a printer. In order to complete the printer installation, you need access to the Windows Server 2008 installation media (via the hard disk, a network share, or the CD-ROM drive).
EXERCISE 7.9

Creating and Publishing a Printer

1. Click Start ➤ Control Panel ➤ Printers ➤ Add Printer. This starts the Add Printer Wizard.

2. In the Choose A Local Or Network Printer page, select Add A Local Printer. This should automatically take you to the next page. If it does not, Click Next.

3. In the Choose A Printer Port page, select Use An Existing Port. From the drop-down list beside that option, make sure LPT1: (Printer Port) is selected. Click Next.
4. On the Install The Printer Driver page, select Generic for the manufacturer, and for the printer, highlight Generic / Text Only. Click Next.

5. On the Type A Printer Name page, type **Text Printer**. Uncheck the Set As The Default Printer box and then click Next.

6. The Installing Printer screen appears. After the system is finished, the Printer Sharing page appears. Make sure the box labeled “Share this printer so that others on your network can find and use it” is selected and accept the default share name of Text Printer.
7. In the Location section, type **Building 203**, and in the Comment section, add the following comment: **This is a text-only Printer**. Click Next.

8. On the You’ve Successfully Added Text Printer page, click Finish.

9. Next, you need to verify that the printer will be listed in Active Directory. Click Start ➔ Control Panel ➔ Printers, then right-click the Text Printer icon and select Properties.
Administering Active Directory

Chapter 7

Note that when you create and share a printer this way, an Active Directory Printer object is not displayed within the Active Directory Users And Computers tool. The printer is actually associated with the Computer object to which it is connected. Printer objects in Active Directory are manually created for sharing printers from Windows NT 4 and earlier shared printer resources.

Publishing Shared Folders

Now that you’ve created and published a printer, you’ll see how the same thing can be done to shared folders.

Exercise 7.10 walks through the steps required to create a folder, share it, and then publish it in Active Directory. This exercise assumes that you are using the C: partition; however, you may want to change this based on your server configuration. This exercise assumes that you have completed Exercise 7.5.

EXERCISE 7.10

Creating and Publishing a Shared Folder

1. Create a new folder in the root directory of your C: partition, and name it Test Share.
2. Right-click the Test Share. Choose Share.

EXERCISE 7.9 (continued)

10. Next, select the Sharing tab, and ensure that the List In The Directory box is checked. Note that you can also add additional printer drivers for other operating systems using this tab. Click OK to accept the settings.

![Image of Print Properties with additional drivers](image-url)}
EXERCISE 7.10 (continued)

3. In the File Sharing dialog box, enter the names of users you want to share this folder with. In the upper box, enter Everyone, then click Add. Note that Everyone appears in the lower box. Click in the Permission Level column next to Everyone and choose Contributor from the pop-up menu. Then click Share.

4. You see a message that your folder has been shared. Click Done.

5. Open the Active Directory Users And Computers tool. Expand the current domain, and right-click the RD OU. Select New ➔ Shared Folder.
Once you have created and published the Shared Folder object, clients can use the My Network Places icon to find this object. The Shared Folder object will be organized based on the OU in which you created the Shared Folder object. When you use publication, you can see how this makes it easy to manage shared folders.

Querying Active Directory

So far you’ve created several Active Directory resources. One of the main benefits of having all of your resource information in Active Directory is that you can easily find what you’re looking for using the Find dialog box. Recall that we recommended that you should always enter as much information as possible when creating Active Directory objects. This is where that extra effort begins to pay off.

Exercise 7.11 walks you through the steps to find specific objects in Active Directory. In order to complete this exercise, you must have first completed Exercise 7.5.

EXERCISE 7.11

Finding Objects in Active Directory

1. Open the Active Directory Users And Computers tool.
2. Right-click the name of the domain and select Find.
3. In the Find Users, Contacts, And Groups dialog box, select Users, Contacts, And Groups from the Find drop-down list. For the In setting, choose Entire Directory. This searches the entire Active Directory environment for the criteria you enter.

Note that if this is a production domain and there are many objects, searching the whole directory may be a time-consuming and network-intensive operation.

4. In the Name field, type admin and then click Find Now to obtain the results of the search.

5. Now that you have found several results, you can narrow down the list. Click the Advanced tab of the Find Users, Contacts, And Groups dialog box.
Using the many options available in the Find dialog box, you can usually narrow down the objects you’re searching for quickly and efficiently. Users and systems administrators alike find this tool useful in environments of any size.

Summary

In this chapter, we covered the fundamentals of administering Active Directory. The most important part of administering Active Directory is learning about how to work with OUs. As a result, you should be aware of the purpose of OUs—they help you to organize and manage the directory. For instance, think of administrative control. If you wanted to delegate rights to another administrator (such as a sales manager), you could delegate that authority to that user within the SALES OU. As the systems administrator, you retain the rights to the castle.

We also looked at how to design an OU structure from an example. In our example, we looked at how to design proper OU layout. Once we finished designing, we looked at how to create, organize, and reorganize OUs if need be.

In addition, we took a look at groups and group strategies. We discussed the different types of groups—domain local, global, and universal groups. We talked about when each group is available and when to use each group.

Lastly, we covered how to use the Active Directory Users And Computers tool to manage Active Directory objects. If you’re responsible for day-to-day systems administration, there’s a good chance that you are already familiar with this tool, but if not, you should be now. Using this tool, you learned how to work with Active Directory objects such as Users, Computers, and Groups. You also learned how to import users by doing a bulk import and the two different file types that work for bulk imports. Bulk imports allow you to import multiple users without the need of adding one user at a time.
Exam Essentials

Understand the purpose of OUs. OUs are used to create a hierarchical, logical organization for objects within an Active Directory domain.

Know the types of objects that can reside within OUs. OUs can contain Active Directory User, Computer, Shared Folder, and other objects.

Understand how to use the Delegation of Control Wizard. The Delegation of Control Wizard is used to assign specific permissions at the level of OUs.

Understand the concept of inheritance. By default, child OUs inherit permissions and Group Policy assignments set for parent OUs. However, these settings can be overridden for more granular control of security.

Know groups and group strategies. We can use three groups in Native mode: domain local, global, and universal. Understand that universal groups cannot be created in Mixed mode. Understand the group strategies and when they apply.

Understand how Active Directory objects work. Active Directory objects represent some piece of information about components within a domain. The objects themselves have attributes that describe details about them.

Understand how Active Directory objects can be organized. By using the Active Directory Users And Computers tool, you can create, move, rename, and delete various objects.

Understand how to import bulk users. You can import multiple accounts by doing a bulk import. Bulk imports use files to import the data into Active Directory. Know the two utilities (ldifde.exe and csvde.exe) you need to use to perform the bulk imports and how to use them.

Learn how resources can be published. A design goal for Active Directory was to make network resources easier for users to find. With that in mind, you should understand how using published printers and shared folders can simplify network resource management.
Review Questions

1. Gabriel is responsible for administering a small Active Directory domain. Recently, the Engineering department within his organization has been divided into two departments. He wants to reflect this organizational change within Active Directory and plans to rename various groups and resources. Which of the following operations can he perform using the Active Directory Users And Computers tool? (Choose all that apply.)
 A. Renaming an organizational unit
 B. Querying for resources
 C. Renaming a group
 D. Creating a computer account

2. You are a domain administrator for a large domain. Recently, you have been asked to make changes to some of the permissions related to OUs within the domain. In order to further restrict security for the Texas OU, you remove some permissions at that level. Later, a junior systems administrator mentions that she is no longer able to make changes to objects within the Austin OU (which is located within the Texas OU). Assuming no other changes have been made to Active Directory permissions, which of the following characteristics of OUs might have caused the change in permissions?
 A. Inheritance
 B. Group Policy
 C. Delegation
 D. Object properties

3. Isabel, a systems administrator, has created a new Active Directory domain in an environment that already contains two trees. During the promotion of the domain controller, she chose to create a new Active Directory forest. Isabel is a member of the Enterprise Administrators group and has full permissions over all domains. During the organization’s migration to Active Directory, many updates have been made to the information stored within the domains. Recently, users and other system administrators have complained about not being able to find specific Active Directory objects in one or more domains (although the objects exist in others).

 In order to investigate the problem, Isabel wants to check for any objects that have not been properly replicated among domain controllers. If possible, she would like to restore these objects to their proper place within the relevant Active Directory domains.
Review Questions

341

Which two of the following actions should she perform to be able to view the relevant information?

A. Change Active Directory permissions to allow object information to be viewed in all domains.

B. Select the Advanced Features item in the View menu.

C. Promote a member server in each domain to a domain controller.

D. Rebuild all domain controllers from the latest backups.

E. Examine the contents of the LostAndFound folder using the Active Directory Users And Computers tool.

4. You are a consultant hired to evaluate an organization’s Active Directory domain. The domain contains over 200,000 objects and hundreds of OUs. You begin examining the objects within the domain, but you find that the loading of the contents of specific OUs takes a very long time. Furthermore, the list of objects can be very large. You want to do the following:

- Use the built-in Active Directory administrative tools, and avoid the use of third-party tools or utilities.
- Limit the list of objects within an OU to only the type of objects that you’re examining (for example, only Computer objects).
- Prevent any changes to the Active Directory domain or any of the objects within it.

Which one of the following actions meets the above requirements?

A. Use the Filter option in the Active Directory Users And Computers tool to restrict the display of objects.

B. Use the Delegation of Control Wizard to give yourself permissions over only a certain type of object.

C. Implement a new naming convention for objects within an OU and then sort the results using this new naming convention.

D. Use the Active Directory Domains And Trusts tool to view information from only selected domain controllers.

E. Edit the domain Group Policy settings to allow yourself to view only the objects of interest.

5. Your organization is currently planning a migration from a Windows NT 4 environment that consists of several domains to an Active Directory environment. Your staff consists of 25 system administrators who are responsible for managing one or more domains. The organization is finalizing a merger with another company.
John, a technical planner, has recently provided you with a preliminary plan to migrate your environment to several Active Directory domains. He has cited security and administration as major justifications for this plan. Jane, a consultant, has recommended that the Windows NT 4 domains be consolidated into a single Active Directory domain. Which of the following statements provide a valid justification to support Jane’s proposal? (Choose all that apply.)

A. In general, OU structure is more flexible than domain structure.
B. In general, domain structure is more flexible than OU structure.
C. It is possible to create a distributed system administration structure for OUs by using delegation.
D. The use of OUs within a single domain can greatly increase the security of the overall environment.

Miguel is a junior-level systems administrator and he has basic knowledge about working with Active Directory. As his supervisor, you have asked Miguel to make several security-related changes to OUs within the company’s Active Directory domain. You instruct Miguel to use the basic functionality provided in the Delegation of Control Wizard. Which of the following operations are represented as common tasks within the Delegation of Control Wizard? (Choose all that apply.)

A. Reset passwords on user accounts.
B. Manage Group Policy links.
C. Modify the membership of a group.
D. Create, delete, and manage groups.

You are the primary systems administrator for a large Active Directory domain. Recently, you have hired another systems administrator to offload some of your responsibilities. This systems administrator will be responsible for handling help desk calls and for basic user account management. You want to allow the new employee to have permissions to reset passwords for all users within a specific OU. However, for security reasons, it’s important that the user not be able to make permissions changes for objects within other OUs in the domain. Which of the following is the best way to do this?

A. Create a special administration account within the OU and grant it full permissions for all objects within Active Directory.
B. Move the user’s login account into the OU that he or she is to administer.
C. Move the user’s login account to an OU that contains the OU (that is, the parent OU of the one that he or she is to administer).
D. Use the Delegation of Control Wizard to assign the necessary permissions on the OU that he or she is to administer.
8. You have been hired as a consultant to assist in the design of an organization’s Active Directory environment. Specifically, you are instructed to focus on the OU structure (others will be planning for technical issues). You begin by preparing a list of information that you need to create the OU structure for a single domain. Which of the following pieces of information is not vital to your OU design?

A. Physical network topology
B. Business organizational requirements
C. System administration requirements
D. Security requirements

9. You want to allow the Super Users group to create and edit new objects within the Corporate OU. Using the Delegation of Control Wizard, you choose the Super Users group and arrive at the following screen. Where would you click in order to add the ability to create and edit new objects in the Corporate OU?

A. Create, Delete, And Manage User Accounts
B. Create, Delete And Manage Groups
C. Manage Group Policy Links
D. Create A Custom Task To Delegate
10. A systems administrator is using the Active Directory Users And Computers tool to view the objects within an OU. He has previously created many users, groups, and computers within this OU, but now only the users are showing. What is a possible explanation for this?

A. Groups and computers are not normally shown in the Active Directory Users And Computers tool.
B. Another systems administrator may have locked the groups, preventing others from accessing them.
C. Filtering options have been set that specify that only User objects should be shown.
D. The Group and Computer accounts have never been used and are, therefore, not shown.

11. The company you work for has a multilevel administrative team that is segmented by departments and locations. There are four major locations and you are in the Northeast group. You have been assigned to the administrative group that is responsible for creating and maintaining network shares for files and printers in your region. The last place you worked was a large Windows NT 4 network, where you had a much wider range of responsibilities. You are excited about the chance to learn more about Windows Server 2008.

For your first task, you have been given a list of file and printer shares that need to be created for the users in your region. You ask how to create them in Windows Server 2008, and you are told that the process of creating a share is the same as with Windows NT. You create the shares and use `NET USE` to test them. Everything appears to work fine, so you send out a message that the shares are available. The next day, you start receiving calls from users who say that they cannot see any of the resources that you created. What is the most likely reason for the calls from the users?

A. You forgot to enable NetBIOS for the shares.
B. You need to force replication for the shares to appear in the directory.
C. You need to publish the shares in the directory.
D. The shares will appear within the normal replication period.

12. Wilford Products has over 1,000 users in 5 locations across the country. The network consists of 4 servers and around 250 workstations in each location. One of the 4 servers in each location is a domain controller. As the new network administrator, you are now responsible for all aspects of the OUs within the directory. After meeting with the HR department, you have been informed that the vice president of sales has left the organization, and you are to remove his access to all resources on the network. You return to your office and remove his account from the directory. After you remove the account, you are immediately notified that you have been misinformed and the vice president of sales is not leaving the company. You quickly re-add him within the window of replication between the other domain controllers. What else must you do to reinstate his account and all his associated permissions?

A. Nothing. Since you re-created the account before the replication window opened, the account will remain in the directory.
B. Open the Tombstone folder and remove the object that is pending in order to remove the account before the replication window opens.
C. After replication occurs, you need to manually synchronize his account in the domain controllers.
D. You must re-establish every permission and setting manually.
13. You want to publish a printer to Active Directory. In the following screen, where would you click in order to accomplish this task?

![Printer Properties Screen]

A. The Sharing tab
B. The Advanced tab
C. The Device Settings tab
D. The Printing Preferences button

14. You have inherited the administrator position of a network that has already completed its migration from Windows NT to Windows Server 2008. The network consists of a single domain that serves two locations with five servers at each site. The replication topology has proven to be solid, and the monitoring tasks that were in place when you arrived show no errors. Each site has two domain controllers for redundancy, each of which has a DNS server to support name resolution. Your first tasks are to learn how the directory has been designed and how the structure of the OUs is providing management capabilities to the domain. As you begin to settle in, you add some new users to the domain, but some of them complain that they cannot do what you have told them they could do. As you investigate the problem, you determine that Group Policy is not being applied when the users with the problems log on to the network. What are the possible reasons for this problem? (Choose all that apply.)

A. The policy has been blocked for the OU of which the users are members.
B. The users are not members of the OU that is subject to the Group Policy object.
C. The users are members of a security group whose Apply Group Policy ACE is set to Deny.
D. Policies must be applied to the specific OU that contains the users before they take effect.
15. A systems administrator creates a local Printer object, but it doesn’t show up in Active Directory when a user executes a search for all printers. Which of the following are possible reasons for this? (Choose all that apply.)
 A. The printer was not shared.
 B. The List In Directory option is unchecked.
 C. The client does not have permissions to view the printer.
 D. The printer is malfunctioning.

16. As the network administrator for your company, you find that you need a plan for how to structure your OUs. You also need to accommodate the delegation of a few OUs to other administrators. Your current layout is as follows: you have a Sales department, a Marketing department, and an HR department. You need to plan and create OUs. You want to delegate control of each OU to each department supervisor. Which of the following solutions will help satisfy your plan?
 A. Build an OU called ADMIN, and then create three OUs below it called SALES, MARKET, and HR. Delegate control of each OU to each respective department head.
 B. Build an OU called SITEA, and then create two OUs below it called SALES and MARKET. Create a third OU under MARKET called HR. Delegate control of each OU to each respective department head.
 C. Build an OU called ADMIN, and then create three OUs below it called SALES, MARKET, and HR. Create Administrator accounts for each OU and then allow each to control their respective OUs.
 D. Build an OU called SITEA, and then create four OUs below it called SALES, ADMIN, MARKET, and HR. Delegate control of each OU to each respective department head and make sure that ADMIN keeps Executive Administrative privileges.

17. You are the Lead Administrator and Designer for your company. You have just installed the first of many Windows Server 2008 systems. You are building your infrastructure and now need to design the OU layout and implement it. You have to design an OU structure that includes the following departments: IT, HR, SALES, MARKETING, ENGINEERING, and CORPORATE. You also need to make sure that the supervisor within each department is able to manage each OU you create. You will need to delegate permissions. What is the best way to design your OU structure?
 A. Create an OU at the top level and call it DELEGATION. Create second-level OUs under DELEGATION and assign administrative rights to each. Create a policy that will allow each supervisor the right to manage the DELEGATION OU.
 B. Create an OU at the top level. Call it ADMIN1. Create IT, HR, SALES, MARKETING, ENGINEERING, and CORPORATE under ADMIN1. Set up delegation to the proper users for each OU.
 C. Design a top-level OU and create it with administrative rights. Name it US. Make an OU called COMP1 under US and then create SALES and MARKETING under it. Create a
Review Questions

second OU called UK and create all the rest of the needed OUs under it. Rights will be assigned by default.

D. Create an OU at the top level. Call it TOP1. Create a Regional OU called US. Create IT1, HR1, SALES1, MARKETING1, ENGINEERING1, and CORPORATE1 under US1. Set up delegation to the proper users for each OU.

18. You are the network administrator responsible for administering and creating new OUs for your organization. You just changed an internal company name and need to make that change in Active Directory. Which of the following is the easiest way to make this change?
 A. Rename the OU to SALESFORCE1.
 B. Delete the OU and re-create it.
 C. Using the Active Directory Sites And Services tool, use the Name option to make the change.
 D. Create a new OU, name it SALESFORCE1, and delete the old OU.

19. As the lead systems administrator for your company, you are asked to delegate permissions to a user within the SALES OU. What tool is used to achieve this functionality? (Choose only one).
 A. In Active Directory Sites And Services, right-click the OU where you want to delegate permissions and choose Delegate Control.
 B. In Active Directory Trusts And Domains, right-click the OU where you want to delegate permissions and choose Delegate Control.
 C. In Active Directory Users And Computers, right-click the OU where you want to delegate permissions and choose Delegate Control.
 D. In Active Directory Domains And Forests, right-click the OU where you want to delegate permissions and choose Delegate Control.

20. You are asked to deploy Windows Server 2008 in your organization. You need to consider creating a management structure that will allow you to apply policies. What logical Active Directory object will allow you this functionality?
 A. Containers
 B. Forests
 C. Domains
 D. Organizational units (OUs)
Chapter 7 • Administering Active Directory

Answers to Review Questions

1. A, B, C, D. The Active Directory Users And Computers tool was designed to simplify the administration of Active Directory objects. All of the above operations can be carried out using this tool.

2. A. Inheritance is the process by which permissions placed on parent OUs affect child OUs. In this example, the permissions change for the higher-level OU (Texas) automatically caused a change in permissions for the lower-level OU (Austin).

3. B, E. Enabling the Advanced Features item in the View menu will allow Isabel to see the LostAndFound and System folders. The LostAndFound folder contains information about objects that could not be replicated among domain controllers.

4. A. Through the use of filtering, you can choose which types of objects you want to see using the Active Directory Users And Computers tool. Several of the other choices may work, but they require changes to Active Directory settings or objects.

5. A, C. You can easily move and rename OUs without having to promote domain controllers and make network changes. This makes OU structure much more flexible and a good choice since the company may soon undergo a merger. Because security administration is important, delegation can be used to control administrative permissions at the OU level.

6. A, B, C, D. All of the options listed are common tasks presented in the Delegation of Control Wizard.

7. D. The Delegation of Control Wizard is designed to allow administrators to set up permissions on specific Active Directory objects.

8. A. OUs are created to reflect a company’s logical organization. Because your focus is on the OU structure, you should be primarily concerned with business requirements. Other Active Directory features can be used to accommodate the network topology and technical issues (such as performance and scalability).

9. D. When you choose to delegate custom tasks, you have many more options for what you can delegate control of and what permissions you can apply. To do this, you must first select the Create A Custom Task To Delegate radio button, and then select the custom tasks. In this case, you would delegate control of Organizational Unit objects and set the permissions to Create All Child Objects, Read All Properties, and Write All Properties.

10. C. The filtering options would cause other objects to be hidden (although they still exist). Another explanation (but not one of the choices) is that a higher-level systems administrator modified the administrator’s permissions using the Delegation of Control Wizard.
11. C. You need to publish shares in the directory before they are available to the users of the directory. If NetBIOS is still enabled on the network, the shares will be visible to the NetBIOS tools and clients, but you do not have to enable NetBIOS on shares. Although replication must occur before the shares are available in the directory, it is unlikely that the replication will not have occurred by the next day. If this is the case, then you have other problems with the directory as well.

12. D. When you delete an object in the directory, such as a user, it is gone and cannot be brought back. You could use a tape backup to bring an object back, but this would be a major undertaking for something like that and you would lose any other changes that occurred since the last backup. The best way to deal with an employee’s leaving the organization is to disable the account and wait for a specified period before permanently removing it. In many cases, the person who replaces the former employee will need the same resources, so you can then simply rename the account, change the password, and re-enable the account for the new user.

13. A. The Sharing tab contains a check box that you can use to list the printer in Active Directory.

14. A, B, C. If you or a previous administrator has blocked a policy from flowing to an OU, then it will not apply to users in the OU. If the users are not in an OU that is subject to the policy, then the users will not receive that policy. If the users are members of a security group with an ACE set to Deny The Apply Group Policy, then it will block the policy. In general, policies flow down the directory tree if they are not blocked, so you do not have to apply the policy to each individual OU.

15. A, B, C. The first three reasons listed are explanations for why a printer may not show up within Active Directory. The printer will appear as an object in Active Directory even if it is malfunctioning.
16. A. The easiest way to achieve a desired result that is both easy to manage and secure is to build an OU called ADMIN, and then create three OUs below it called SALES, MARKET, and HR. Delegate control of each OU to each respective department head. If you do this, then you can retain control over the ADMIN OU and still be able to maintain control over your systems.

17. B. To lay out the OU design properly, you should consider the easiest possible way to get it done. In this example, that would be to create an administrative top-level OU and then branch off from there. This way, you can maintain control while still being able to delegate as you see fit. Also, your OU structure should be as simple as possible. You can make OUs by country code and so on—that is actually recommended—but you should also prepare for the future plans of the organization so that you do not have to do double the work.

18. A. The easiest way to achieve the desired result is to simply rename the OU.

19. C. If you need to delegate control, you can use Active Directory Users And Computers, right-click the OU where you want to delegate permissions, and choose Delegate Control.

20. D. OUs are extremely important to Active Directory’s logical design. OUs allow you to delegate permissions, apply security, and so on.
Chapter 8

Configuring Group Policy Objects

MICROSOFT EXAM OBJECTIVES COVERED IN THIS CHAPTER:

✓ Creating and Maintaining Active Directory Objects
 ▪ Create and apply Group Policy objects (GPOs). May include but is not limited to: enforce OU hierarchy, block inheritance, and enabling user objects; group policy processing priority; WMI; RSoP; group policy filtering; group policy loopback
 ▪ Configure GPO templates. May include but is not limited to: user rights; ADMX Central Store; administrative templates; security templates; restricted groups; security options; starter GPOs; shell access policies
 ▪ Configure software deployment GPOs. May include but is not limited to: publishing to users; assigning software to users; assigning to computers; software removal
For many years in this industry, it was a time consuming process to make changes to computer or user environments. If you wanted to install a service pack or a piece of software, unless you had a third-party utility, you had to use sneakernet (that is, you had to walk from one computer to another with a disk containing the software).

Installing any type of software was one of the biggest challenges faced by systems administrators. It was difficult enough to deploy and manage workstations throughout the environment. When you added in the fact that users were generally able to make system configuration changes, it quickly became a management nightmare!

For example, imagine that a user noticed that they did not have enough disk space to copy a large file. Instead of seeking help from the IT help desk, they may have decided to do a little cleanup of their own. Unfortunately, this cleanup operation may have involved deleting critical system files! Or, consider the case of users who changed system settings “just to see what they do.” Relatively minor changes, such as modifying TCP/IP bindings or Desktop settings, could cause hours of support headaches. Now, multiply these (or other common) problems by hundreds (or even thousands) of end users. Clearly, systems administrators needed to have a way to limit the options available to users of client operating systems.

So how do you prevent problems like these from occurring in a Windows Server 2008 environment? Fortunately, there’s a solution that comes with the base operating system that’s readily available and easy to implement. One of the most important system administration features in Windows Server 2008 and Active Directory is Group Policy. By using Group Policy objects (GPOs), administrators can quickly and easily define restrictions on common actions and then apply them at the site, domain, or organizational unit (OU) level. In this chapter, you will see how group policies work and then look at how you can implement them within an Active Directory environment.

Introducing Group Policy

One of the strengths of Windows-based operating systems is their flexibility. End users and systems administrators can configure many different options to suit the network environment and their personal tastes. However, this flexibility comes at a price—generally, many of these options should not be changed by end users on a network. For example, TCP/IP configuration and security policies should remain consistent for all client computers. In fact, end users really don’t need to be able to change these types of settings in the first place because many of them do not understand what these setting are used for.
In previous versions of Windows (NT 4 and earlier), system administrators could use system policies (config.pol or ntconfig.pol files) to restrict some functionality at the Desktop level. They could make settings for users or computers, for instance; however, these settings focused primarily on preventing the user from performing such actions as changing their Desktop settings. The system administrators managed these changes by modifying Registry keys, which made creating and distributing policy settings difficult. Furthermore, the types of configuration options available in the default templates were not always sufficient, and systems administrators often had to dive through cryptic and poorly documented Registry settings to make necessary changes.

Windows Server 2008’s group policies are designed to allow system administrators the ability to customize end user settings and to place restrictions on the types of actions that users can perform. Group policies can be easily created by systems administrators and then later applied to one or more users or computers within the environment. Although they ultimately do affect Registry settings, it is much easier to configure and apply settings through the use of Group Policy than it is to manually make changes to the Registry. To make management easy, Microsoft has set Windows Server 2008 up so that Group Policy settings are all managed from within the Microsoft Management Console (MMC) in the Group Policy Management Console (GPMC).

Group policies have several different potential uses. We’ll cover the use of group policies for software deployment, and we will also focus on the technical background of group policies and how they apply to general configuration management.

Let’s begin by looking at how group policies function.

Understanding Group Policy Settings

Group Policy settings are based on Group Policy administrative templates. These templates provide a list of user-friendly configuration options and specify the system settings to which they apply. For example, an option for a user or computer that reads, “Require a Specific Desktop Wallpaper Setting,” would map to a key in the Registry that maintains this value. When the option is set, the appropriate change is made in the Registry of the affected user(s) and computer(s).

By default, Windows Server 2008 comes with several administrative template files that you can use to manage common settings. Additionally, systems administrators and application developers can create their own administrative template files to set options for specific functionality.

Most Group Policy items have three different settings options:

- **Enabled** Specifies that a setting for this GPO has been configured. Some settings require values or options to be set.

- **Disabled** Specifies that this option is disabled for client computers. Note that disabling an option is a setting. That is, it specifies that the systems administrator wants to disallow certain functionality.

- **Not Configured** Specifies that these settings have been neither enabled nor disabled. Not Configured is the default option for most settings. It simply states that this Group Policy will not specify an option and that other policy settings may take precedence.
Chapter 8 • Configuring Group Policy Objects

The specific options available (and their effects) will depend on the setting. Often, you will need additional information. For example, when setting the Account Lockout policy, you must specify how many bad login attempts may be made before the account is locked out. With this in mind, let’s look at the types of user and computer settings that can be managed.

Group Policy settings can apply to two types of Active Directory objects: Users and Computers. Because both Users and Computers can be placed into groups and organized within OUs, this type of configuration simplifies the management of hundreds, or even thousands, of computers.

The main options you can configure within User and Computer Group Policies are as follows:

Software Settings Software Settings options apply to specific applications and software that might be installed on the computer. Systems administrators can use these settings to make new applications available to end users and to control the default configuration for these applications.

Windows Settings Windows Settings options allow systems administrators to customize the behavior of the Windows operating system. The specific options that are available here are divided into two types: users and computers. User-specific settings let you configure Internet Explorer (including the default home page and other settings). Computer settings include security options, such as Account Policy and Event Log options.

Administrative Templates Administrative Templates are used to further configure user and computer settings. In addition to the default options available, systems administrators can create their own administrative templates with custom options.

Figure 8.1 shows some of the options that you can configure with Group Policy.

ADMX Central Store Another consideration in GPO settings is whether to set up an ADMX Central Store. GPO administrative template files are saved as .admx files. To get the most benefit out of using administrative templates, you should create an ADMX Central Store.

You create the Central Store in the SYSVOL folder on a domain controller. The Central Store is a repository for all of your administrative templates and it is checked by the Group Policy tools. The Group Policy tools then use any .admx files that they find in the Central Store. These files then replicate to all domain controllers in the domain.

Security Template Security Templates are used to configure security settings through a GPO. Some of the security settings that can be configured are settings for account policies, local policies, event log, restricted group, system services, and Registry. Security Templates are described in detail in Chapter 9, “Planning Security for Active Directory.”

Later in this chapter, we’ll look into the various options available in more detail.
Introducing Group Policy

Group Policy settings do not take effect immediately. You must run the `gpupdate` command at the command prompt or wait for the regular update cycle (90 minutes by default) in order for the policy changes to take effect.

WARNING

Group Policy settings do not take effect immediately. You must run the `gpupdate` command at the command prompt or wait for the regular update cycle (90 minutes by default) in order for the policy changes to take effect.

FIGURE 8.1 Group Policy configuration options

Group Policy Objects

So far, we have been talking about what group policies are designed to do. Now, it's time to drill down to determine exactly how you can set up and configure them.

To make them easier to manage, group policies may be placed in items called *Group Policy objects (GPOs)*. GPOs act as containers for the settings made within Group Policy files; this simplifies the management of settings. For example, as a systems administrator, you might have different policies for users and computers in different departments. Based on these requirements, you could create a GPO for members of the Sales department and another for members of the Engineering department. Then you could apply the GPOs to the OU for each
Chapter 8 • Configuring Group Policy Objects

department. Another important concept you need to understand is that Group Policy settings are hierarchical—that is, system administrators can apply Group Policy settings at three different levels:

Sites At the highest level, system administrators can configure GPOs to apply to entire sites within an Active Directory environment. These settings apply to all of the domains and servers that are part of a site. Group Policy settings managed at the site level may apply to more than one domain. Therefore, they are useful when you want to make settings that apply to all of the domains within an Active Directory tree or forest.

For more information on sites, see Chapter 5, “Configuring Sites and Replication.”

Domains Domains are the second level to which system administrators can assign GPOs. GPO settings placed at the domain level will apply to all of the User and Computer objects within the domain. Usually, systems administrators make master settings at the domain level.

Organizational units The most granular level of settings for GPOs is at the OU level. By configuring Group Policy options for OUs, systems administrators can take advantage of the hierarchical structure of Active Directory. If the OU structure is planned well, you will find it easy to make logical GPO assignments for various business units at the OU level.

Based on the business need and the organization of the Active Directory environment, systems administrators might decide to set up Group Policy settings at any of these three levels. Because the settings are cumulative by default, a User object might receive policy settings from the site level, from the domain level, and from the OUs in which it is contained.

You can also apply Group Policy settings to the local computer (in which case Active Directory is not used at all), but this limits the manageability of the Group Policy settings.

Group Policy Inheritance

In most cases, Group Policy settings are cumulative. For example, a GPO at the domain level might specify that all users within the domain must change their passwords every 60 days, and a GPO at the OU level might specify the default Desktop background for all users and computers within that OU. In this case, both settings apply, and users within the OU are forced to change their password every 60 days and have the default Desktop setting.

So what happens if there’s a conflict in the settings? For example, suppose we create a scenario where a GPO at the site level specifies that users are to change passwords every 60 days, and one at the OU level specifies that they must change passwords every 90 days. Since Password policies for GPOs, though available, are not applied at the OU or site level, only Password policies at the domain level are applied. Although hypothetical, this raises an important point about inheritance. By default, the settings at the most specific level (in this case, the OU that contains the User object) override those at more general levels.
Although the default behavior is for settings to be cumulative and inherited, systems administrators can modify this behavior. Systems administrators can set two main options at the various levels to which GPOs might apply:

Block Policy Inheritance The Block Policy Inheritance option specifies that Group Policy settings for an object are not inherited from its parents. You might use this, for example, when a child OU requires completely different settings from a parent OU. Note, however, that you should manage blocking policy inheritance carefully because this option allows other systems administrators to override the settings made at higher levels.

Force Policy Inheritance The Enforced (sometimes referred as the NO Override) option can be placed on a parent object and ensures that all lower-level objects inherit these settings. In some cases, systems administrators want to ensure that Group Policy inheritance is not blocked at other levels. For example, suppose it is corporate policy that all Network accounts are locked out after five incorrect password attempts. In this case, you would not want lower-level systems administrators to override the option with other settings.

Systems administrators generally use this option when they want to globally enforce a specific setting. For example, if a password expiration policy should apply to all users and computers within a domain, a GPO with the Force Policy Inheritance option enabled could be created at the domain level.

We must consider one final case: if a conflict exists between the computer and user settings, the user settings take effect. If, for instance, a system administrator applies a default Desktop setting for the Computer policy, and a different default Desktop setting for the User policy, the one they specify in the User policy takes effect. This is because the user settings are more specific, and they allow systems administrators to make changes for individual users, regardless of the computer they're using.

Planning a Group Policy Strategy

Through the use of Group Policy settings, systems administrators can control many different aspects of their network environment. As you’ll see throughout this chapter, system administrators can use GPOs to configure user settings and computer configurations. Windows Server 2008 includes many different administrative tools for performing these tasks. However, it’s important to keep in mind that, as with many aspects of using Active Directory, a successful Group Policy strategy involves planning.

Because there are hundreds of possible GPO settings and many different ways in which you can implement them, start by determining the business and technical needs of your organization. For instance, first group your users based on their work functions. You might find, for example, that users in remote branch offices require particular network configuration options. In that case, you might implement Group Policy settings best at the site level. Or, you might find that certain departments have varying requirements for disk quota settings. In this case, it would probably make the most sense to apply GPOs to the appropriate department OUs within the domain.
The overall goal should be to reduce complexity (for example, by reducing the overall number of GPOs and GPO links), while still meeting the needs of your users. By taking into account the various needs of your users and the parts of your organization, you can often determine a logical and efficient method of creating and applying GPOs. Although it’s rare that you’ll come across a right or wrong method of implementing Group Policy settings, you will usually encounter some that are either better or worse than others.

By implementing a logical and consistent set of policies, you’ll also be well prepared to troubleshoot any problems that might come up, or to adapt to your organization’s changing requirements. Later in this chapter, you’ll see some specific methods for determining effective Group Policy settings before you apply them.

Implementing Group Policy

Now that we’ve covered the basic layout and structure of group policies and how they work, let’s look at how you can implement them in an Active Directory environment. In this section, you’ll start by creating GPOs. Then, you’ll apply these GPOs to specific Active Directory objects and take a look at how to use administrative templates.

Creating GPOs

In previous versions of Windows Server (2000 and 2003) you could create GPOs from many different locations. For example, you could use Active Directory Users And Computers to create GPOs on your OUs along with other GPO tools. In Windows Server 2008, things are simpler. You can create GPOs for OUs in only one location: the Group Policy Management Console (GPMC). You have your choice of two applications for setting up policies on your Windows Server 2008 computers.

Local Computer Policy tool This administrative tool allows you to quickly access the Group Policy settings that are available for the local computer. These options apply to the local machine and to users that access it. You must be a member of the local administrators group to access and make changes to these settings.

Group Policy Management Console (GPMC) You must use the GPMC to manage Group Policy deployment. The GPMC provides a single solution for managing all Group Policy-related tasks and is also best suited to handle enterprise-level tasks such as forest-related work.

The GPMC allow administrators to manage the Group Policy and GPOs whether their enterprise solution spans multiple domains and sites within one or more forests, or whether it is local to one site all from one easy-to-use console. The GPMC adds flexibility, manageability, and functionality. Using this console, you can also perform other functions such as backup and restore, importing, and copying.
Exercise 8.1 walks you through the process of installing the Group Policy Management MMC snap-in for editing Group Policy settings and creating a GPO.

WARNING

You should be careful when making Group Policy settings because certain options might prevent the proper use of systems on your network. Always test Group Policy settings on a small group of users before you deploy GPOs throughout your organization. You’ll probably find that some settings need to be changed in order for them to be effective.

EXERCISE 8.1

Creating a Group Policy Object Using the GPMC

1. Click Start > Run, type `mmc`, and press Enter.
2. On the File menu, click Add/Remove Snap-In.
3. Click the Add button. In the Add Or Remove Snap-Ins dialog box, select Group Policy Management from the list, and click Add. If Group Policy Management is not on the list, go to step 4. If the choice is there, go to step 7.
4. (Only complete this step if Group Policy Management is missing from the list in the Add Or Remove Snap-Ins dialog box in step 3.) Click Start ➔ Administrative Tools ➔ Server Manager. In Server Manager, click Features. On the right side, click Add Features.

5. Under the first section, check the box labeled Group Policy Management and then click Install. After it is installed, restart this exercise from step 1.

EXERCISE 8.1 (continued)

7. Expand the Forest, Domains, your domain name, and North America containers. Right-click the Corporate OU and then choose the menu item Create A GPO In This Domain, And Link It Here.

8. When the New GPO dialog box appears, type Warning Box in the Name field. Click OK.
9. The New GPO will be listed on the right side of the Group Policy Management window. Right-click the GPO and choose Edit.

11. Click the box labeled Define This Policy Setting In The Template. In the text box, type Unauthorized use of this machine is prohibited and then click OK. Close the GPO and return to the GPMC main screen.
12. Under the domain name (in the GPMC) right-click Group Policy Objects and choose New.

13. When the New GPO dialog box appears, type **Unlinked Test GPO** in the Name field. Click OK.

14. On the right side, the new GPO will appear. Right-click the Unlinked Test GPO and choose Edit.

15. Under the User Configuration section, click **Administrative Templates** → **Desktop**. On the right side, double-click **Hide And Disable All Items On The Desktop** and then click Enabled. Click OK and then close the GPMC.
Note that Group Policy changes may not take effect until the next user logs in (some settings may even require that the machine be rebooted). That is, users who are currently working on the system will not see the effects of the changes until they log off and log in again. GPOs are reapplied every 90 minutes with a 30-minute offset. In other words, users who are logged on will have their policies reapplied every 60–120 minutes. Not all settings are reapplied (for example, software settings and Password policies).

Linking Existing GPOs to Active Directory

Creating a GPO is the first step in assigning group policies. The second step is to link the GPO to a specific Active Directory object. As mentioned earlier in this chapter, GPOs can be linked to sites, domains, and OUs.

Exercise 8.2 walks you through the steps you must take to assign an existing GPO to an OU within the local domain. In this exercise, you will link the Test Domain Policy GPO to an OU. In order to complete the steps in this exercise, you must have first completed Exercise 8.1.

EXERCISE 8.2

Linking Existing GPOs to Active Directory

1. Open the Group Policy Management Console (GPMC).
2. Expand the Forest and Domain containers and right-click the Africa OU.
3. Choose Link An Existing GPO.
Note that the GPMC tool offers a lot of flexibility in assigning GPOs. You can create new GPOs, add multiple GPOs, edit them directly, change priority settings, remove links, and delete GPOs all from within this interface. In general, creating new GPOs using the GPMC tool is the quickest and easiest way to create the settings you need.

To test the Group Policy settings, you can simply create a User account within the Africa OU that you created in Exercise 8.2. Then, using another computer that is a member of the same domain, you can log on as the newly created user.

Managing Group Policy

Now that you have implemented GPOs and applied them to sites, domains, and OUs within Active Directory, it’s time to look at some ways to manage them. In the following sections, you’ll look at how multiple GPOs can interact with one another and ways you can provide security for GPO management. These features are a very important part of working with Active Directory, and if you properly plan Group Policy, you can greatly reduce the time the help desk spends troubleshooting common problems.

Managing GPOs

One of the benefits of GPOs is that they’re modular and can apply to many different objects and levels within Active Directory. This can also be one of the drawbacks of GPOs if they’re not managed properly. A common administrative function related to using GPOs is finding all of the Active Directory links for each of these objects. You can do this when you are viewing

EXERCISE 8.2 (continued)

4. The Select GPO dialog box appears. Click Unlinked Test GPO and click OK.

5. Close the Group Policy Management Console.
the Linked Group Policy Objects tab of the Site, Domain, or OU in the GPMC (shown in Figure 8.2).

Figure 8.2 Viewing GPO links to an Active Directory OU

In addition to the common action of delegating permissions on OUs, you can set permissions regarding the modification of GPOs. The best way to accomplish this is to add users to the Group Policy Creator/Owners built-in security group. The members of this group are able to modify security policy. You saw how to add users to groups back in Chapter 7, “Administering Active Directory.”

Security Filtering of a Group Policy

Another method of securing access to GPOs is to set permissions on the GPOs themselves. You can do this by opening the GPMC, selecting the GPO, and clicking the Advanced button in the Delegation tab. The Unlinked Test GPO Security Settings dialog box appears (see Figure 8.3). The permissions options include the following:

- Full Control
- Read
- Write
- Create All Child Objects
- Delete All Child Objects
- Apply Group Policy
You might have to scroll the Permissions window to see the Apply Group Policy item.

FIGURE 8.3 A GPO’s Security dialog box

Of these, the Apply Group Policy setting is particularly important because you use it to filter the scope of the GPO. Filtering is the process by which selected security groups are included or excluded from the effects of the GPOs. To specify that the settings should apply to a GPO, you should select the Allow checkbox for both the Apply Group Policy setting and the Read setting. These settings will be applied only if the security group is also contained within a site, domain, or OU to which the GPO is linked. In order to disable GPO access for a group, choose Deny for both of these settings. Finally, if you do not want to specify either Allow or Deny, leave both boxes blank. This is effectively the same as having no setting.

In Exercise 8.3, you will filter Group Policy using security groups. In order to complete the steps in this exercise, you must have first completed Exercises 8.1 and 8.2.

EXERCISE 8.3

Filtering Group Policy Using Security Groups

1. Open the Active Directory Users And Computers administrative tool.
2. Create a new OU called **Group Policy Test**.
3. Create two new Global Security groups within the Group Policy Test OU and name them **PolicyEnabled** and **PolicyDisabled**.
4. Exit Active Directory Users And Computers and open the GPMC.
5. Right-click the Group Policy Test OU, and select Link An Existing GPO.
6. Choose Unlinked Test GPO and click OK.
7. Expand Group Policy Test OU so that you can see the GPO (Unlinked Test GPO) underneath the OU.

8. Click the Delegation tab and then click the Advanced button in the lower right corner of the window.

9. Click the Add button and type **PolicyEnabled** in the Enter The Object Names To Select field. Click the Check Names button. Then click OK.

10. Add a group named **PolicyDisabled** in the same way.
EXERCISE 8.3 (continued)

11. Highlight the PolicyEnabled group, and select Allow for the Read and Apply Group Policy permissions. This ensures that users in the PolicyEnabled group will be affected by this policy.

![Unlinked Test GPO Security Settings]

12. Highlight the PolicyDisabled group, and select Deny for the Read and Apply Group Policy permissions. This ensures that users in the PolicyDisabled group will not be affected by this policy.

![Unlinked Test GPO Security Settings]
By using these settings, you can ensure that only the appropriate individuals will be able to modify GPO settings.

Delegating Administrative Control of GPOs

So far, you have learned about how you can use Group Policy to manage user and computer settings. What you haven’t done is determine who can modify GPOs. It’s very important to establish the appropriate security on GPOs themselves for two main reasons.

1. If the security settings aren’t set properly, users and systems administrators can easily override them. This defeats the purpose of having the GPOs in the first place.
2. Having many different systems administrators creating and modifying GPOs can become extremely difficult to manage. When problems arise, the hierarchical nature of GPO inheritance can make it difficult to pinpoint the problem.

Fortunately, through the use of delegation, determining security permissions for GPOs is a simple task. You saw the usefulness of delegation in Chapter 7.

Exercise 8.4 walks you through the steps you must take to grant the appropriate permissions to a User account. Specifically, the process involves delegating the ability to manage Group Policy links on an Active Directory object (such as an OU). In order to complete this exercise, you must have first completed Exercises 8.1 and 8.2.

EXERCISE 8.4

Delegating Administrative Control of Group Policy

1. Open the Active Directory Users And Computers tool.
2. Expand the local domain, and create a user named Policy Admin within the Group Policy Test OU.

3. Exit Active Directory Users And Computers and open the GPMC.

4. Click the Group Policy Test OU and select the Delegation tab.

5. Click the Add button. In the field labeled Enter The Object Name To Select, type Policy Admin and click the Check Names button.
6. The Add Group or User dialog box appears. In the Permissions drop-down list, make sure the item labeled This Container And All Child Containers is chosen. Click OK.

7. At this point you should be looking at the Group Policy Test Delegation window. Click the Advanced button in the lower right corner.

8. Highlight the Policy Admin account and check the Allow Full Control box. This user now has full control of these OUs and all child OUs and GPOs for these OUs. Click OK.

If you want to just give this user individual rights, then in the Properties window (step 8), click the Advanced button and then the Effective Permissions tab. This is where you can also choose a user and give them just the rights you need them to have.

9. When you are finished, close the GPMC tool.
Controlling Inheritance and Filtering Group Policy

Controlling inheritance is an important function when you are managing GPOs. Earlier in this chapter, you learned that, by default, GPO settings flow from higher-level Active Directory objects to lower-level ones. For example, the effective set of Group Policy settings for a user might be based on GPOs assigned at the site level, the domain level, and in the OU hierarchy. In general, this is probably the behavior you would want.

In some cases, however, you might want to block Group Policy inheritance. You can accomplish this easily by selecting the object to which a GPO has been linked. Right-click the object and choose Block Inheritance (see Figure 8.4). By enabling this option, you are effectively specifying that this object starts with a clean slate—that is, no other Group Policy settings will apply to the contents of this Active Directory site, domain, or OU.
Systems administrators can also force inheritance. By setting the Enforced option, they can prevent other systems administrators from making changes to default policies. You can set the Enforced option by right-clicking the GPO and choosing the Enforced item (see Figure 8.5).
Assigning Script Policies

Systems administrators might want to make several changes and settings that would apply while the computer is starting up or the user is logging on. Perhaps the most common operation that logon scripts perform is mapping network drives. Although users can manually map network drives, providing this functionality within login scripts ensures that mappings stay consistent and that users need only remember the drive letters for their resources.

Script policies are specific options that are part of Group Policy settings for users and computers. These settings direct the operating system to the specific files that should be processed during the startup/shutdown or logon/logoff processes. You can create the scripts by using the Windows Script Host (WSH) or by using standard batch file commands. WSH allows developers and systems administrators to quickly and easily create scripts using the familiar Visual Basic Scripting Edition (VBScript) or JScript (Microsoft’s implementation of JavaScript). Additionally, WSH can be expanded to accommodate other common scripting languages.

To set script policy options, you simply edit the Group Policy settings. As shown in Figure 8.6, there are two main areas for setting script policy settings:

FIGURE 8.6 Viewing Startup/Shutdown script policy settings

Startup/Shutdown Scripts These settings are located within the Computer Configuration ➔ Windows Settings ➔ Scripts (Startup/Shutdown) object.

Logon/Logoff Scripts These settings are located within the User Configuration ➔ Windows Settings ➔ Scripts (Logon/Logoff) object.
To assign scripts, simply double-click the setting, at which time its Properties dialog box appears. For instance, if you double-click the Startup setting, the Startup Properties dialog box appears, as shown in Figure 8.7. To add a script filename, click the Add button. When you do, you will be asked to provide the name of the script file (such as MapNetworkDrives.vbs or ResetEnvironment.bat).

FIGURE 8.7 Setting scripting options

Note that you can change the order in which the scripts are run by using the Up and Down buttons. The Show Files button opens the directory folder in which you should store the Logon script files. In order to ensure that the files are replicated to all domain controllers, you should be sure that you place the files within the SYSVOL share.

Managing Network Configuration

Group policies are also useful in network configuration. Although administrators can handle network settings at the protocol level using many different methods—such as Dynamic Host Configuration Protocol (DHCP)—Group Policy allows them to set which functions and operations are available to users and computers.

Figure 8.8 shows some of the features that are available for managing Group Policy settings. The paths to these settings are as follows:

- **Computer network options** These settings are located within the Computer Configuration, Administrative Templates, Network, Network Connections folder.

- **User network options** These settings are located within the User Configuration, Administrative Templates, Network folder.

Some examples of the types of settings available include the following:

- The ability to allow or disallow the modification of network settings.

In many environments, the improper changing of network configurations and protocol settings is a common cause of help desk calls.
The ability to allow or disallow the creation of Remote Access Service (RAS) connections. This option is very useful, especially in larger networked environments, because the use of modems and other WAN devices can pose a security threat to the network.

The ability to set offline files and folders options. This is especially useful for keeping files synchronized for traveling users and is commonly configured for laptops.

Each setting includes detailed instructions in the description area of the GPO Editor window. By using these configuration options, systems administrators can maintain consistency for users and computers and can avoid many of the most common troubleshooting calls.

FIGURE 8.8 Viewing Group Policy User network configuration options

Automatically Enrolling User and Computer Certificates in Group Policy

You can also use Group Policy to automatically enroll user and computer certificates, making the entire certificate process transparent to your end users. Before you go on, you should understand what certificates are and why they are an important part of network security.

Think of a digital certificate as a carrying case for a public key. A certificate contains the public key and a set of attributes, including the key holder’s name and email address. These attributes specify something about the holder: their identity, what they’re allowed to do with the certificate, and so on. The attributes and the public key are bound together because the
certificate is digitally signed by the entity that issued it. Anyone who wants to verify the certificate’s contents can verify the issuer’s signature.

Certificates are one part of what security experts call a public-key infrastructure (PKI). A PKI has several different components that you can mix and match to achieve the desired results. Microsoft’s PKI implementation offers the following functions:

Certificate authorities (CAs) Issue certificates, revoke certificates they’ve issued, and publish certificates for their clients. Big CAs like Thawte and VeriSign may do this for millions of users; you can also set up your own CA for each department or workgroup in your organization if you want. Each CA is responsible for choosing what attributes it will include in a certificate and what mechanism it will use to verify those attributes before it issues the certificate.

Certificate publishers Make certificates publicly available, inside or outside an organization. This allows widespread availability of the critical material needed to support the entire PKI.

PKI-savvy applications Allow you and your users to do useful things with certificates, like encrypt email or network connections. Ideally, the user shouldn’t have to know (or even necessarily be aware of) what the application is doing—everything should work seamlessly and automatically. The best-known examples of PKI-savvy applications are web browsers like Internet Explorer and Netscape Navigator and email applications like Outlook and Outlook Express.

Certificate templates Act like rubber stamps: By specifying a particular template as the model you want to use for a newly issued certificate, you’re actually telling the CA which optional attributes to add to the certificate, as well as implicitly telling it how to fill some of the mandatory attributes. Templates greatly simplify the process of issuing certificates because they keep you from having to memorize the names of all the attributes you might potentially want to put in a certificate.

Learn More about PKI

The exam doesn’t go deeply into PKI, but we recommended that you do some extra research on your own because it is a very important technology and shouldn’t be overlooked. When discussing certificates, it’s important to also mention PKI and its definition. PKI is actually a simple concept with a lot of moving parts. When broken down to its bare essentials, PKI is nothing more than a server and workstations utilizing a software service to add security to your infrastructure. When you use PKI, you are adding a layer of protection.

Note

Installing and configuring a CA goes beyond the scope of this book. For more information, see the *MCTS: Windows Server 2008 Network Infrastructure Study Guide (70-642)*, by William Panek, Tylor Wentworth, and James Chellis (Sybex, 2008).
The auto-enrollment Settings policy determines whether or not users and/or computers are automatically enrolled for the appropriate certificates when necessary. By default, this policy is enabled if a Certificate Server is installed, but you can make changes to the settings as shown in Exercise 8.5.

In Exercise 8.5, you will learn how to configure automatic certificate enrollment in Group Policy. You must have completed the other exercises in this chapter in order to proceed.

EXERCISE 8.5

Configuring Automatic Certificate Enrollment in Group Policy

1. Open the Group Policy Management Console tool.
2. Right-click the North America OU you created in the previous exercises in this book.
3. Choose Create A GPO In This Domain And Link It Here and name it Test CA. Click OK.
4. Right-click the Test CA GPO and choose Edit.
Redirecting Folders

Another set of Group Policy settings that you will learn about are the folder redirection settings. Group Policy provides a means of redirecting the My Documents, Desktop, and Start menu folders, as well as cached application data, to network locations. Folder redirection is particularly useful for the following reasons:

- When using roaming user profiles, a user’s My Documents folder is copied to the local machine each time he logs on. This requires high bandwidth consumption and time if the My Documents folder is large. If you redirect the My Documents folder, it stays in the redirected location, and the user opens and saves files directly to that location.
- Documents are always available no matter where the user logs on.
- Data in the shared location can be backed up during the normal backup cycle without user intervention.
- Data can be redirected to a more robust server-side-administered disk that is less prone to physical and user errors.

EXERCISE 8.5 (continued)

8. For now, you won’t change anything. Just become familiar with the settings in this dialog box. Click OK to close it.
When you decide to redirect folders, you have two options: basic and advanced.

- Basic redirection redirects everyone’s folders to the same location (but each user gets their own folder within that location).
- Advanced redirection redirects folders to different locations based on group membership. For instance, you could configure the Engineers group to redirect their folders to //Engineering1/My_Documents/ and the Marketing group to //Marketing1/My_Documents/. Again, each individual user still gets their own folder within the redirected location.

To configure folder redirection, follow the steps in Exercise 8.6. You must have completed the other exercises in this chapter in order to proceed.

EXERCISE 8.6

Configuring Folder Redirection in Group Policy

1. Open the GPMC tool.
2. Open the North America OU and then edit the Test CA GPO.
4. Right-click Documents and select Properties.
5. On the Target tab of the Documents Properties dialog box, choose the Basic - Redirect Everyone’s Folder To The Same Location selection from the Setting drop-down list.

![Documents Properties Dialog Box](image)
6. Leave the default option for the Target Folder Location drop-down list and specify a network path in the Root Path field.

7. Click the Settings tab. All of the default settings are self-explanatory and should typically be left with the default setting. Click OK when you are done.

Real World Scenario

Folder Redirection Facts

Try not to mix up the concepts of *folder redirection* and *offline folders*, especially in a world with ever-increasing numbers of mobile users. Folder redirection and offline folders are different features.

Windows Server 2008 folder redirection works as follows: the system uses a pointer that moves the folders you want to a location you specify. Users do not see any of this—it is transparent to them. One problem with folder redirection is that it does not work for mobile users (users who will be offline and who will not have access to files that they may need).

Offline folders, however, are copies of folders that were local to you. Files are now available locally to you on the system you have with you. They are also located back on the server where they are stored. Next time you log in, the folders are synchronized so that both folders contain the latest data. This is a perfect feature for mobile users, whereas folder redirection provides no benefit for the mobile user.
Deploying Software through a GPO

It’s difficult enough to manage applications on a stand-alone computer. It seems that the process of installing, configuring, and uninstalling applications is never finished. Add in the hassle of computer reboots and reinstalling corrupted applications, and the reduction in productivity can be very real.

Software administrators who manage software in network environments have even more concerns.

- First and foremost, they must determine which applications specific users require.
- Then, IT departments must purchase the appropriate licenses for the software and acquire any necessary media.
- Next, the system administrators need to actually install the applications on users’ machines. This process generally involves help desk staff visiting computers, or it requires end users to install the software themselves. Both processes entail several potential problems, including installation inconsistency and lost productivity from downtime experienced when applications were installed.
- Finally, they still need to manage software updates and remove unused software.

One of the key design goals for Active Directory was to reduce some of the headaches involved in managing software and configurations in a networked environment. To that end, Windows Server 2008 offers several features that can make the task of deploying software easier and less error prone. Before you dive into the technical details, though, you need to examine the issues related to software deployment.

The Software Management Life Cycle

Although it may seem that the use of a new application requires only the installation of the necessary software, the overall process of managing applications involves many more steps. When managing software applications, there are three main phases to the life cycle of applications:

Phase 1: Deploying software. The first step in using applications is to install them on the appropriate client computers. Generally, some applications are deployed during the initial configuration of a PC, and others are deployed when they are requested. In the latter case, this often used to mean that systems administrators and help desk staff would have to visit client computers and manually walk through the installation process. With Windows Server 2008 and GPOs, the entire process can be automated.
Chapter 8 • Configuring Group Policy Objects

It is very important to understand that just because you can easily deploy software does not necessarily mean that you have the right to do so. Before you install software on client computers, you must make sure that you have the appropriate licenses for the software. Furthermore, it’s very important to take the time to track application installations. As many systems administrators have discovered, it’s much more difficult to inventory software installations after they’ve been performed. Another issue you may encounter is that you lack available resources (for instance, your system does not meet the minimum hardware requirements) and face problems such as limited hard disk space or memory that may not be able to handle the applications you want to load and use. You may also find that your user account does not have the permission to install software. It’s important to consider not only how you will install software, but whether you can.

Phase 2: Maintaining software Once an application is installed and in use on client computers, you need to ensure that the software is maintained. You must keep programs up to date by applying changes due to bug fixes, enhancements, and other types of updates. This is normally done with service packs, hot fixes, and updates. As with the initial software deployment, software maintenance can be tedious. Some programs require older versions to be uninstalled before updates are added. Others allow for automatically upgrading over existing installations. Managing and deploying software updates can consume a significant amount of the IT staff’s time.

Using Windows Update

Make sure you learn about Windows Update, a service that allows you to connect to Microsoft’s website and download what your system may need to bring it up to compliance. This tool is very helpful if you are running a stand-alone system, but if you want to deploy software across your enterprise, the best way to accomplish this is to first test the updates you are downloading and make sure you can use them and that they are not buggy. Then you can use a tool such as the Windows Server Update Service (WSUS), formally called the Software Update Services (SUS).

You can check for updates at Microsoft’s website (http://update.microsoft.com). Microsoft likes to ask many types of questions about WSUS on its certification exams. WSUS is described in detail in other Sybex certification series books.

Phase 3: Removing software At the end of the life cycle for many software products is the actual removal of unused programs. Removing software is necessary when applications become outdated or when users no longer require their functionality. One of the traditional problems with uninstalling applications is that many of the installed files may not be removed. Furthermore, the removal of shared components can sometimes cause other programs to stop functioning properly. Also, users often forget to uninstall applications that they no longer
need, and these programs continue to occupy disk space and consume valuable system resources.

Each of these three phases of the software maintenance life cycle is managed by the Microsoft Windows Installer (MSI). Now that you have an overview of the process, let's move on to look at the actual steps involved in deploying software using Group Policy.

The Windows Installer

If you've installed newer application programs (such as Microsoft Office 2007), you probably noticed the updated setup and installation routines. Applications that comply with the updated standard use the Windows Installer specification and MSI software packages for deployment. Each package contains information about various setup options and the files required for installation. Although the benefits may not seem dramatic on the surface, there's a lot of new functionality under the hood.

The Windows Installer was created to solve many of the problems associated with traditional application development. It has several components, including the Installer service (which runs on Windows 2000, XP, Vista, Server 2003, and Server 2008 computers), the Installer program (`msiexec.exe`) that is responsible for executing the instructions in a Windows Installer package, and the specifications third-party developers use to create their own packages. Within each installation package file is a relational structure (similar to the structure of tables in databases) that records information about the programs contained within the package.

In order to appreciate the true value of the Windows Installer, you'll need to look at some of the problems with traditional software deployment mechanisms, and then at how the Windows Installer addresses many of these.

Application Installation Issues

Before the Windows Installer, applications were installed using a setup program that managed the various operations required for a program to operate. These operations included copying files, changing Registry settings, and managing any other operating system changes that might be required (such as starting or stopping services). However, this method included several problems:

- The setup process was not robust, and aborting the operation often left many unnecessary files in the filesystem.
- The process included uninstalling an application (this also often left many unnecessary files in the filesystem) and remnants in the Windows Registry and operating system folders. Over time, these remnants would result in reduced overall system performance and wasted disk space.
There was no standard method for applying upgrades to applications, and installing a new version often required users to uninstall the old application, reboot, and then install the new program.

Conflicts between different versions of dynamic link libraries (DLLs)—shared program code used across different applications—could cause the installation or removal of one application to break the functionality of another.

Benefits of the Windows Installer

Because of the many problems associated with traditional software installation, Microsoft created the Windows Installer. This system provides for better manageability of the software installation process and allows systems administrators more control over the deployment process. Specifically, benefits of the Windows Installer include the following:

Improved software removal The process of removing software is an important one since remnants left behind during the uninstall process can eventually clutter up the Registry and filesystem. During the installation process, the Windows Installer keeps track of all of the changes made by a setup package. When it comes time to remove an application, all of these changes can then be rolled back.

More robust installation routines If a typical setup program is aborted during the software installation process, the results are unpredictable. If the actual installation hasn’t yet begun, then the installer generally removes any temporary files that may have been created. If, however, the file copy routine starts before the system encounters an error, it is likely that the files will not be automatically removed from the operating system. In contrast, the Windows Installer allows you to roll back any changes when the application setup process is aborted.

Ability to use elevated privileges Installing applications usually requires the user to have Administrator permissions on the local computer because filesystem and Registry changes are required. When installing software for network users, systems administrators thus have two options. First, they can log off of the computer before installing the software and then log back on as a user who has Administrator permissions on the local computer. This method is tedious and time-consuming. The second option is to temporarily give users Administrator permissions on their own machines. This method could cause security problems and requires the attention of a systems administrator.

Through the use of the Installer service, the Windows Installer is able to use temporarily elevated privileges to install applications. This allows users, regardless of their security settings, to execute the installation of authorized applications. The end result is that this saves time and preserves security.

Support for repairing corrupted applications Regardless of how well a network environment is managed, critical files are sometimes lost or corrupted. Such problems can prevent applications from running properly and can cause crashes. Windows Installer packages provide you with the ability to verify the installation of an application and, if necessary, replace any missing or corrupted files. This support saves time and lessens the end-user headaches associated with removing and reinstalling an entire application to replace just a few files.
Prevention of file conflicts Generally, different versions of the same files should be compatible with each other. In the real world, however, this isn’t always the case. A classic problem in the Windows world is the case of one program replacing DLLs that are used by several other programs. Windows Installer accurately tracks which files are used by certain programs and ensures that any shared files are not improperly deleted or overwritten.

Automated installations A typical application setup process requires end users or systems administrators to respond to several prompts. For example, a user may be able to choose the program group in which icons will be created and the filesystem location to which the program will be installed. Additionally, they may be required to choose which options are installed. Although this type of flexibility is useful, it can be tedious when you are rolling out multiple applications. By using features of the Windows Installer, however, users are able to specify setup options before the process begins. This allows systems administrators to ensure consistency in installations and it saves users’ time.

Advertising and on-demand installations One of the most powerful features of the Windows Installer is its ability to perform on-demand software installations. Prior to Windows Installer, application installation options were quite basic—either a program was installed or it was not. When setting up a computer, systems administrators would be required to guess which applications the user might need and install all of them.

The Windows Installer supports a function known as advertising. Advertising makes applications appear to be available via the Start menu. However, the programs themselves may not actually be installed on the system. When a user attempts to access an advertised application, the Windows Installer automatically downloads the necessary files from a server and installs the program. The end result is that applications are installed only when they are needed, and the process requires no intervention from the end user. We’ll cover the details of this process later in this chapter.

To anyone who has managed many software applications in a network environment, all of these features of the Windows Installer are likely welcome ones. They also make life easier for end users and application developers who can focus on the “real work” their jobs demand.

Windows Installer File Types
When performing software deployment with the Windows Installer in Windows Server 2008, you may encounter several different file types:

Microsoft Windows Installer (MSI) packages In order to take full advantage of Windows Installer functionality, applications must include Microsoft Windows Installer packages. These packages are normally created by third-party application vendors and software developers, and they include the information required to install and configure the application and any supporting files.

Microsoft Transformation (MST) files Microsoft Transformation (MST) files are useful when you are customizing the details of how applications are installed. When a systems administrator chooses to assign or publish an application, they may want to specify additional options for the package. If, for instance, a systems administrator wants to allow users to install only the
Microsoft Word and Microsoft PowerPoint components of Office XP, they could specify these options within a transformation file. Then, when users install the application, they will be provided with only the options related to these components.

Microsoft patches (MSP) In order to maintain software, patches are often required. Patches may make Registry and/or filesystem changes. Patch files are used for minor system changes and are subject to certain limitations. Specifically, a patch file cannot remove any installed program components and cannot delete or modify any shortcuts created by the user.

Initialization files In order to provide support for publishing non–Windows Installer applications, initialization files can be used. These files provide links to a standard executable file that is used to install an application. An example might be `\\server1\software\program1\setup.exe`. These files can then be published and advertised, and users can access the **Add or Remove Programs** icon to install them over the network.

Application assignment scripts (AAS) Application assignment scripts store information regarding assigning programs and any settings that the systems administrator makes. These files are created when Group Policy is used to create software package assignments for users and computers.

Each of these types of files provides functionality that allows the system administrator to customize software deployment. Windows Installer packages have special properties that you can view by right-clicking the file in Windows Explorer and choosing **Properties** (see Figure 8.9).

FIGURE 8.9 Viewing the properties of an MSI package file
Deploying Software through a GPO

Deploying Applications

The functionality provided by Windows Installer offers many advantages to end users who install their own software. That, however, is just the beginning in a networked environment. As you’ll see later in this chapter, the various features of Windows Installer and compatible packages allow systems administrators to centrally determine applications that users will be able to install.

There are two main methods of making programs available to end users using Active Directory: assigning and publishing. Both publishing and assigning applications greatly ease the process of deploying and managing applications in a network environment.

In the following sections, you’ll look at how the processes of assigning and publishing applications can make life easier for IT staff and users alike. The various settings for assigned and published applications are managed through the use of GPOs.

Assigning Applications

Software applications can be assigned to users and computers. Assigning a software package makes the program available for automatic installation. The applications advertise their availability to the affected users or computers by placing icons within the Programs folder of the Start menu.

When applications are assigned to a user, programs will be advertised to the user, regardless of which computer they are using. That is, icons for the advertised program will appear within the Start menu, regardless of whether the program is installed on that computer. If the user clicks an icon for a program that has not yet been installed on the local computer, the application will automatically be accessed from a server and will be installed.

When an application is assigned to a computer, the program is made available to any users of the computer. For example, all users who log on to a computer that has been assigned Microsoft Office XP will have access to the components of the application. If the user did not previously install Microsoft Office, they will be prompted for any required setup information when the program first runs.

Generally, applications that are required by the vast majority of users should be assigned to computers. This reduces the amount of network bandwidth required to install applications on demand and improves the end user experience by preventing the delay involved when installing an application the first time it is accessed. Any applications that may be used by only a few users (or those with specific job tasks) should be assigned to users.

Publishing Applications

When applications are published, they are advertised, but no icons are automatically created. Instead, the applications are made available for installation using the Add Or Remove Programs icon in the Control Panel.

Vista does not have the Add Or Remove Programs feature. In Vista, use the Programs icon in Control Panel to install the software.
Implementing Software Deployment

So far, you have become familiar with the issues related to software deployment and management from a theoretical level. Now it’s time to drill down into the actual steps required to deploy software using the features of Active Directory and the GPMC. In the following sections, you will walk through the steps required to create an application distribution share point, to publish and assign applications, to update previously installed applications, to verify the installation of applications, and to update Windows operating systems.

Preparing for Software Deployment

Before you can install applications on client computers, you must make sure that the necessary files are available to end users. In many network environments, systems administrators create shares on file servers that include the installation files for many applications. Based on security permissions, either end users or systems administrators can then connect to these shares from a client computer and install the needed software. The efficient organization of these shares can save the help desk from having to carry around a library of CD-ROMs and can allow you to install applications easily on many computers at once.

Exercise 8.7 walks you through the process of creating a software distribution share point. In this exercise, you will prepare for software deployment by creating a directory share and placing certain types of files in this directory. In order to complete the steps in this exercise, you must have access to the Microsoft Office 2007 installation files (via CD-ROM or through a network share) and have 2000MB of free disk space.

EXERCISE 8.7

Creating a Software Deployment Share

1. Using Windows Explorer, create a folder called `Software` that you can use with application sharing. Be sure that the volume on which you create this folder has at least 2000MB of available disk space.

2. Within the `Software` folder, create a folder called `Office 2007`.
Once you have created an application distribution share, it’s time to actually publish and assign the applications. This topic is covered next.

Publishing and Assigning Applications

As we mentioned earlier in this section, system administrators can make software packages available to users by using publishing and assigning operations. Both of these operations allow systems administrators to leverage the power of Active Directory and, specifically, GPOs to determine which applications are available to users. Additionally, OUs can provide the organization that can help group users based on their job functions and software requirements.

The general process involves creating a GPO that includes software deployment settings for users and computers and then linking this GPO to Active Directory objects.

Exercise 8.8 walks you through the steps you need to take to publish and assign applications. In this exercise, you will create and assign applications to specific Active Directory objects using GPOs. In order to complete the steps in this exercise, you must have first completed Exercise 8.7.

EXERCISE 8.7 (continued)

3. Copy all of the installation files for Microsoft Office 2007 from the CD-ROM or network share containing the files to the Office 2007 folder that you created in step 2.

4. Right-click the Software folder (created in step 1), and select Share. In the Choose People On Your Network To Share With dialog box, type Everyone, and click the Add button. Next click the Share button. When you see a message that the sharing process is complete, click the Done button.

5. Copy the Microsoft Office 2007 installation files (including the .MSI files) to the share.

EXERCISE 8.8

Publishing and Assigning Applications Using Group Policy

1. Open the Active Directory Users And Computers tool from the Administrative Tools program group.

2. Expand the domain, and create a new top-level OU called Software.

3. Within the Software OU, create a user named Jane User with a login name of juser (choose the defaults for all other options).

4. Exit Active Directory Users And Computers and open the Group Policy Management Console (GPMC).
EXERCISE 8.8 (continued)

5. Right-click on the Software OU and choose Create A GPO In This Domain And Link It Here.

6. For the name of the new GPO, type Software Deployment.

8. Right-click the Software Installation item, and select New ➤ Package.

9. Navigate to the Software share that you created in Exercise 8.7.

10. Within the Software share, double-click the Office 2007 folder and select the appropriate MSI file depending on the version of Office 2007 that you have. Office 2007 Professional is being used in this example, so you’ll see that the OFFICEMUI.MSI file is chosen. Click Open.
11. In the Deploy Software dialog box, choose Advanced. (Note that the Published option is unavailable because applications cannot be published to computers.) Click OK to return to the Deploy Software dialog box.

12. To examine the deployment options of this package, click the Deployment tab. Accept the default settings by clicking OK.

13. Within the Group Policy Object Editor, expand the User Configuration ➤ Software Settings object.

14. Right-click the Software Installation item, and select New ➤ Package.

15. Navigate to the Software share that you created in Exercise 8.7.

16. Within the Software share, double-click the Office 2007 folder, and select the appropriate MSI file. Click Open.

17. For the Software Deployment option, select Published in the Deploy Software dialog box and click OK.

18. Close the GPMC.
The overall process involved with deploying software using Active Directory is quite simple. However, you shouldn’t let the intuitive graphical interface fool you—there’s a lot of power under the hood of these software deployment features! Once you’ve properly assigned and published applications, it’s time to see the effects of your work.

Applying Software Updates

The steps described in the previous section work only when you are installing a brand-new application. However, software companies often release updates that you need to install on top of existing applications. These updates usually consist of bug fixes or other changes that are required to keep the software up to date. You can apply software updates in Active Directory by using the Upgrades tab of the software package Properties dialog box found in the Group Policy Object Editor.

In Exercise 8.9, you will apply a software update to an existing application. You should add the upgrade package to the GPO in the same way that you added the original application in steps 8 through 12 of Exercise 8.8. You should also have completed Exercise 8.8 before attempting this exercise.

EXERCISE 8.9

Applying Software Updates

1. Open the Group Policy Management Console (GPMC) from the Administrative Tools program group.
2. Click the Software OU, right-click the Software Deployment GPO, and choose Edit.
4. Right-click the software package and select Properties from the context menu to bring up the Properties dialog box.
You should understand that not all upgrades make sense in all situations. For instance, if Stellacon 6 files are incompatible with the Stellacon 10 application, then your Stellacon 6 users might not want you to perform the upgrade without taking additional steps to ensure that they can continue to use their files. In addition, users might have some choice about which version they use when it doesn’t affect the support of the network.

Regardless of the underlying reason for allowing this flexibility, you should be aware that there are two basic types of upgrades that are available for administrators to provide to the users:

Mandatory upgrade Forces everyone who currently has an existing version of the program to upgrade according to the GPO. Users who have never installed the program for whatever reason will be able to install only the new upgraded version.

Nonmandatory upgrade Allows users to choose whether they would like to upgrade. This upgrade type also allows users who do not have their application installed to choose which version they would like to use.
Verifying Software Installation

In order to ensure that the software installation settings you make in a GPO have taken place, you can log in to the domain from a Windows XP Professional or Vista computer that is within the OU to which the software settings apply. When you log in, you will notice two changes. First, the application is installed on the computer (if it was not installed already). In order to access the application, all a user needs to do is click one of the icons within the Program group of the Start menu. Note also that applications are available to any of the users who log on to this machine. Second, the settings apply to any computers that are contained within the OU and to any users who log on to these computers.

If you publish an application to users, the change may not be as evident, but it is equally useful. When you log on to a Windows XP Professional or Vista computer that is a member of the domain, and when you use a user account from the OU where you published the application, you will be able to automatically install any of the published applications. On a Windows XP Professional computer, you can do this by accessing the Add Or Remove Programs icon in the Control Panel. By clicking Add New Programs, you access a display of the applications available for installation. By clicking the Add button in the Add New Programs section of the Add Or Remove Programs dialog box, you will automatically begin the installation of the published application.

Vista does not have the Add Or Remove Programs feature. In Vista, use the Programs icon in Control Panel to install the software.

Configuring Automatic Updates in Group Policy

So far you’ve seen the advantages of deploying application software in a Group Policy. Group policies also provide a way to install operating system updates across the network for Windows 2000, XP, Vista, Server 2003, and Server 2008 machines using Windows Update in conjunction with WSUS. WSUS is the newer version of SUS and is used on a Windows Server 2008 system to update systems. As you might remember from earlier, WSUS and SUS are patch management tools that help you deploy updates to your systems in a controlled manner.

Windows Update is available through the Microsoft website and is used to provide the most current files for the Windows operating systems. Examples of updates include security fixes, critical updates, updated help files, and updated drivers. You can access Windows Updates by clicking the Windows Updates icon in the system tray.

WSUS is used to leverage the features of Windows Update within a corporate environment by downloading Windows updates to a corporate server, which in turn provides the updates to the internal corporate clients. This allows administrators to test and have full control over what updates are deployed within the corporate environment.
Configuring Software Deployment Settings

Within an enterprise network that is using Active Directory, you would typically see automatic updates configured through Group Policy. Group policies are used to manage configuration and security settings via Active Directory. Group Policy is also used to specify what server a client will use for automatic updates.

If the WSUS client is a part of an enterprise network that is using Active Directory, you would configure the client via a Group Policy.

Configuring Software Deployment Settings

In addition to the basic operations of assigning and publishing applications, you can use several other options to specify the details of how software is deployed. In the following sections, you will examine the various options that are available and their effects on the software installation process.

The Software Installation Properties Dialog Box

The most important software deployment settings are contained in the Software Installation Properties dialog box, which you can access by right-clicking the Software Installation item and selecting Properties from the pop-up menu. The following sections describe the features contained on the various tabs of the dialog box.

Managing Package Defaults

On the General tab of the Software Installation Properties dialog box, you’ll be able to specify some defaults for any packages that you create within this GPO. Figure 8.10 shows the General options for managing software installation settings.

Figure 8.10 General tab of the Software Installation Properties dialog box
The various options available include the following:

Default Package Location This setting specifies the default filesystem or network location for software installation packages. This is useful if you are already using a specific share on a file server for hosting the necessary installation files.

New Packages options These settings specify the default type of package assignment that will be used when you add a new package to either the user or computer settings. If you'll be assigning or publishing multiple packages, you may find it useful to set a default here. Selecting the Advanced option enables Group Policy to display the package’s Properties dialog box each time a new package is added.

Installation User Interface Options When they are installing an application, systems administrators may or may not want end users to see all of the advanced installation options. If Basic is chosen, the user will only be able to configure the minimal settings (such as the installation location). If Maximum is chosen, all of the available installation options will be displayed. The specific installation options available will depend on the package itself.

The Advanced Tab

The Advanced tab (see Figure 8.11) includes several options for configuring advanced software installation properties. The only option you need to be concerned with is the following:

"Uninstall the applications when they fall out of the scope of management." So far, you have seen how applications can be assigned and published to users or computers. But what happens when effective GPOs change? For example, suppose that User A is currently located within the Sales OU. A GPO that assigns the Microsoft Office XP suite of applications is linked to the Sales OU. Now, you decide to move User A to the Engineering OU, which has no software deployment settings. Should the application be uninstalled, or should it remain?

If the “Uninstall the applications when they fall out of the scope of management” option is checked, applications will be removed if they are not specifically assigned or published within GPOs. In our earlier example, this means that Office XP would be uninstalled for User A. If, however, this box is left unchecked, the application would remain installed.

Figure 8.11 The Advanced tab of the Software Installation Properties dialog box
Managing File Extension Mappings

One of the potential problems associated with using many different file types is that it’s difficult to keep track of which applications work with which files. For example, if you received a file with the extension .abc, you would have no idea which application you would need to view it. And Windows would not be of much help, either.

Fortunately, through software deployment settings, systems administrators can specify mappings for specific file extensions. For example, you could specify that whenever users attempt to access a file with the extension .vsd, the operating system should attempt to open the file using the Visio diagramming software. If Visio is not installed on the user’s machine, the computer can automatically download and install it (assuming that the application has been properly advertised).

This method allows users to have applications automatically installed when they are needed. The following is an example of the sequence of events that might occur:

1. A user receives an email message that contains an Adobe Acrobat file attachment.
2. The computer realizes that Adobe Acrobat, the appropriate viewing application for this type of file, is not installed. However, it also realizes that a file extension mapping is available within the Active Directory software deployment settings.
3. The client computer automatically requests the Adobe Acrobat software package from the server and uses the Microsoft Windows Installer to automatically install the application.
4. The computer opens the attachment for the user.

Notice that all of these steps were carried out without any further interaction with the user.

You can manage file extension mappings by right-clicking the Software Installation item, selecting Properties, and then clicking the File Extensions tab.

Creating Application Categories

In many network environments, the list of supported applications can include hundreds of items. For users who are looking for only one specific program, searching through a list of all of these programs can be difficult and time-consuming.

Fortunately, methods for categorizing the applications are available on your network. You can easily manage the application categories for users and computers by right-clicking the Software Installation item, selecting Properties, and then clicking the Categories tab.

Figure 8.12 shows you how application categories can be created. It is a good idea to use category names that are meaningful to users because it will make it easier for them to find the programs they’re looking for.

Once the software installation categories have been created, you can view them by opening the Add Or Remove Programs item in the Control Panel. When you click Add New Programs, you’ll see that several options appear in the Category drop-down list. Now, when you select the properties for a package, you will be able to assign the application to one or more of the categories.
Removing Programs

As we discussed in the beginning of the chapter, an important phase in the software management life cycle is the removal of applications. Fortunately, using the GPMC and the Windows Installer packages, the process is simple. To remove an application, you can right-click the package within the Group Policy settings and select All Tasks ➤ Remove (see Figure 8.13).
When choosing to remove a software package from a GPO, you have two options:

Immediately Uninstall The Software From Users And Computers Systems administrators can choose this option to ensure that an application is no longer available to users who are affected by the GPO. When this option is selected, the program will be automatically uninstalled from users and/or computers that have the package. This option might be useful, for example, if the license for a certain application has expired or if a program is no longer on the approved applications list.

Allow Users To Continue To Use The Software, But Prevent New Installations This option prevents users from making new installations of a package, but it does not remove the software if it has already been installed for users. This is a good option if the company has run out of additional licenses for the software, but the existing licenses are still valid.

Figure 8.14 shows these two removal options.

FIGURE 8.14 Software removal options

If you no longer require the ability to install or repair an application, you can delete it from your software distribution share point by deleting the appropriate Windows Installer package files. This will free up additional disk space for newer applications.

Microsoft Windows Installer Settings

Several options influence the behavior of the Windows Installer; you can set them within a GPO. You can access these options by navigating to User Configuration, Administrative Templates, Windows Components, Windows Installer. The options include the following:

Always Install With Elevated Privileges This policy allows users to install applications that require elevated privileges. For example, if a user does not have the permissions necessary to modify the Registry but the installation program must make Registry changes, this policy will allow the process to succeed.

Search Order This setting specifies the order in which the Windows Installer will search for installation files. The options include n (for network shares), m (for searching removal media), and u (for searching the Internet for installation files).

Disable Rollback When this option is enabled, the Windows Installer does not store the system state information that is required to roll back the installation of an application. Systems administrators may choose this option to reduce the amount of temporary disk space required during installation and to increase the performance of the installation operation. However, the
drawback is that the system cannot roll back to its original state if the installation fails and the application needs to be removed.

Disable Media Source For Any Install This option disallows the installation of software using removable media (such as CD-ROM, DVD-ROM, or floppy disks). It is useful for ensuring that users install only approved applications.

With these options, systems administrators can control how the Windows Installer operates for specific users who are affected by the GPO.

Troubleshooting Group Policies

Due to the wide variety of configurations that are possible when you are establishing GPOs, you should be aware of some common troubleshooting methods. These methods will help isolate problems in policy settings or GPO links.

One possible problem with GPO configuration is that logons and system startups may take a long time. This occurs especially in large environments when the Group Policy settings must be transmitted over the network and, in many cases, slow WAN links. In general, the number of GPOs should be limited because of the processing overhead and network requirements during logon. By default, GPOs are processed in a synchronous manner. This means that the processing of one GPO must be completed before another one is applied (as opposed to asynchronous processing, where they can all execute at the same time).

The most common issue associated with Group Policy is the unexpected setting of Group Policy options. In Windows Server 2000, administrators spent countless hours analyzing inheritance hierarchy and individual settings to determine why a particular user or computer was having policy problems. For instance, say a user named wpanek complains that the Run option is missing from his Start menu. The wpanek user account is stored in the New Hampshire OU, and you've applied group policies at the OU, domain, and site level. To determine the source of the problem, you would have to manually sift through each GPO to find the Start menu policy as well as figure out the applicable inheritance settings.

Windows Server 2008 has a handy feature called Resultant Set of Policy (RSoP) that displays the exact settings that actually apply to users, computers, OUs, domains, and sites after inheritance and filtering have taken effect. In the example just described, you could run RSoP on the wpanek account and view a single set of Group Policy settings that represent the settings that actually apply to the wpanek account. In addition, each setting's Properties dialog box displays the GPO that the setting is derived from, as well as the order of priority, the filter status, and other useful information, as you will see a bit later.

RSoP actually runs in two modes:

- **Logging mode** *Logging mode* displays the actual settings that apply to users and computers like in the example in the preceding paragraph.

- **Planning mode** *Planning mode* can be applied to users, computers, OUs, domains, and sites, and you use it before you actually apply any settings. Like its name implies, planning mode is used to plan GPOs.
Additionally, you can run the command-line utility `gpresult.exe` to quickly get a snapshot of the Group Policy settings that apply to a user and/or computer. Let’s take a closer look at the two modes and the `gpresult.exe` command.

RSoP in Logging Mode

RSoP in logging mode can only query policy settings for users and computers. The easiest way to access RSoP in logging mode is through the Active Directory Users And Computers tool, although you can run it as a stand-alone MMC snap-in if you want to.

To analyze the policy settings for wpanek from the earlier example, you would right-click the user icon in Active Directory Users And Computers and select All Tasks ➤ Resultant Set of Policy (Logging). The Group Policy Results Wizard appears. The wizard walks you through the steps necessary to view the RSoP for wpanek.

The Computer Selection page, shown in Figure 8.15, requires you to select a computer for which to display settings. Remember that a GPO contains both user and computer settings, so you must choose a computer that the user has logged on to in order to continue with the wizard. If the user has never logged on to a computer, then you must run RSoP in planning mode, because there is no logged policy information for that user yet.

![Figure 8.15](image-url) The Computer Selection page of the Resultant Set of Policy Wizard

The User Selection page, shown in Figure 8.16, requires you to select a user account to analyze. Because we selected a user from the Active Directory Users And Computers tool, the username is filled in automatically. This page is most useful if you are running RSoP in MMC mode and don’t have the luxury of selecting a user contextually.
The Summary Of Selections page, shown in Figure 8.17, displays a summary of your choices and provides an option for gathering extended error information. If you need to make any changes before you begin to analyze the policy settings, you should click the Back button on the Summary screen. Otherwise, click Next.

After the wizard is complete, you will see the window shown in Figure 8.18. This window looks very much like the Group Policy Object Editor window, but it only displays the policy settings that apply to the user and computer that you selected in the wizard. You can see these users and computers at the topmost level of the tree.
Any warnings or errors appear as a yellow triangle or red X over the applicable icon at the level where the warning or error occurred. To view more information about the warning or error, right-click the icon, select Properties, and select the Error Information tab. An error message is shown in Figure 8.19.

FIGURE 8.19 Details of error pertaining to user wpanek on computer SERVER1

You cannot make changes to any of the individual settings because RSoP is a diagnostic tool and not an editor, but you can get more information about settings by clicking a setting and selecting Properties from the pop-up menu.
Chapter 8 • Configuring Group Policy Objects

The Settings tab of the user’s Properties window, shown in Figure 8.20, displays the actual setting that applies to the user in question based on GPO inheritance.

FIGURE 8.20 The Settings tab of the object’s Properties window

RSoP in Planning Mode

Running RSoP in planning mode isn’t much different from running RSoP in logging mode, but the RSoP Wizard asks for a bit more information than you saw earlier.

In the earlier example, wpanek couldn’t see the Run option in the Start menu because his user account is affected by the New Hampshire GPO in the San Jose OU. As an administrator, you could plan to move his user account to the North America OU. Before doing so, you could verify his new policy settings by running RSoP in planning mode. Run the RSoP on the user wpanek under the scenario that you’ve already moved him from the San Jose OU to the North America OU. At this point, you haven’t actually moved the user, but you can see what his settings would be if you did.

Using the `gpresult.exe` Command

The command-line utility `gpresult.exe` is included as part of the RSoP tool. Running the command by itself without any switches returns the following Group Policy information about the local user and computer:

- The name of the domain controller from which the local machine retrieved the policy information
- The date and time in which the policies were applied
- Which policies were applied
Which policies were filtered out

Group membership

You can use the switches shown in Table 8.1 to get information for remote users and computers and to enable other options.

TABLE 8.1 gpresult Switches

<table>
<thead>
<tr>
<th>Switch</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>/S systemname</td>
<td>Generates RSoP information for a remote computer name</td>
</tr>
<tr>
<td>/USER username</td>
<td>Generates RSoP information for a remote username</td>
</tr>
<tr>
<td>/V</td>
<td>Specifies verbose mode, which displays more verbose information such as user rights information</td>
</tr>
<tr>
<td>/Z</td>
<td>Specifies an even greater level of verbose information</td>
</tr>
<tr>
<td>/SCOPE MACHINE</td>
<td>Displays maximum information about the computer policies applied to this system</td>
</tr>
<tr>
<td>/SCOPE USER</td>
<td>Displays maximum information about the user policies applied to this system</td>
</tr>
<tr>
<td>>textfile.txt</td>
<td>Writes the output to a text file</td>
</tr>
</tbody>
</table>

For example, to obtain information about user wpanek in a system called STELLACON, you would use the command `gpresult /S STELLACON /USER wpanek`.

Through the use of these techniques, you should be able to track down even the most elusive Group Policy problems. Remember, however, that good troubleshooting skills do not replace planning adequately and maintaining GPO settings!

Summary

In this chapter, we examined Active Directory’s solution to a common headache for many systems administrators: policy settings. Specifically, we discussed topics that covered Group Policy. We covered the fundamentals of Group Policy including its fundamental purpose. You can use Group Policy to enforce granular permissions for users in an Active Directory environment. Group policies can restrict and modify the actions they allow for users and computers within the Active Directory environment.

Also group policies can restrict and modify the actions that are allowed for users and computers within the Active Directory environment. Certain Group Policy settings may apply to users, computers, or both. Computer settings affect all users that access the machines to which the policy applies. User settings affect users, regardless of which machines they log on to.
You learned that you can link Group Policy objects (GPOs) to Active Directory sites, domains, or OUs. This link determines to which objects the policies apply. GPO links can interact through inheritance and filtering to result in an effective set of policies.

We covered inheritance and how GPOs filter down. We showed you how to use the Enforced option on a GPO issued from a parent and how to block a GPO from a child.

You also learned that you can use administrative templates to simplify the creation of GPOs. We covered the basic default templates that come with Windows Server 2008.

In addition, administrators can delegate control over GPOs in order to distribute administrative responsibilities. Delegation is an important concept because it allows for distributed administration.

You can also deploy software using GPOs. This feature can save time and increase productivity throughout the entire software management lifestyle by automating software installation and removal on client computers. The Windows Installer offers a more robust method for managing installation and removal, and applications that support it can take advantage of new Active Directory features. Make sure that you are comfortable using the Windows Installer.

You learned about publishing applications via Active Directory and the difference between publishing and assigning applications. We explained that you can assign some applications to users and computers so that they are always available. You can also publish them to users so that they may be installed by the user with a minimal effort when a user requires them.

You also learned how to prepare for software deployment. Before your users can take advantage of automated software installation, you must set up an installation share and provide the appropriate permissions.

The final portion of the chapter covered the Resultant Set of Policy (RSoP) tool, which you can use in logging mode or planning mode to determine exactly which set of policies apply to users, computers, OUs, domains, and sites.

Exam Essentials

Understand the purpose of Group Policy. System administrators use Group Policy to enforce granular permissions for users in an Active Directory environment.

Understand user and computer settings. Certain Group Policy settings may apply to users, computers, or both. Computer settings affect all users that access the machines to which the policy applies. User settings affect users, regardless of which machines they log on to.

Know the interactions between Group Policy objects and Active Directory. GPOs can be linked to Active Directory objects. This link determines to which objects the policies apply.

Understand filtering and inheritance interactions between GPOs. For ease of administration, GPOs can interact via inheritance and filtering. It is important to understand these interactions when you are implementing and troubleshooting Group Policy.

Know how Group Policy settings can affect script policies and network settings. You can use special sets of GPOs to manage network configuration settings.
Understand how delegation of administration can be used in an Active Directory environment. Delegation is an important concept because it allows for distributed administration.

Know how to use the Resultant Set of Policy (RSoP) tool to troubleshoot and plan Group Policy. Windows Server 2008 includes the RSoP feature, which you can be run in logging mode or planning mode to determine exactly which set of policies apply to users, computers, OUs, domains, and sites.

Identify common problems with the software life cycle. IT professionals face many challenges with client applications, including development, deployment, maintenance, and troubleshooting.

Understand the benefits of the Windows Installer. Using the Windows Installer is an updated way to install applications on Windows-based machines. It offers a more robust method for making the system changes required by applications, and it allows for a cleaner uninstall. Windows Installer–based applications can also take advantage of new Active Directory features.

Understand the difference between publishing and assigning applications. Some applications can be assigned to users and computers so that they are always available. Applications can be published to users so that the user may install the application with a minimal amount of effort when it is required.

Know how to prepare for software deployment. Before your users can take advantage of automated software installation, you must set up an installation share and provide the appropriate permissions.

Know how to configure application settings using Active Directory and Group Policy. Using standard Windows Server 2008 administrative tools, you can create an application policy that meets the needs of your requirements. Features include automatic, on-demand installation of applications as well as many other features.

Create application categories to simplify the list of published applications. It’s important to group applications by functionality or the users to whom they apply, especially in organizations that support a large number of programs.
Review Questions

1. A systems administrator is planning to implement Group Policy objects (GPOs) in a new Windows Server 2008 Active Directory environment. In order to meet the needs of the organization, he decides to implement a hierarchical system of Group Policy settings. At which of the following levels is he able to assign Group Policy settings? (Choose all that apply.)
 A. Sites
 B. Domains
 C. Organizational units (OUs)
 D. Local system

2. Ann is a systems administrator for a medium-sized Active Directory environment. She has determined that several new applications that will be deployed throughout the organization use Registry-based settings. She would like to do the following:
 - Control these Registry settings using Group Policy.
 - Create a standard set of options for these applications and allow other systems administrators to modify them using the standard Active Directory tools.

Which of the following options can she use to meet these requirements? (Choose all that apply.)
 A. Implement the inheritance functionality of GPOs.
 B. Implement delegation of specific objects within Active Directory.
 C. Implement the No Override functionality of GPOs.
 D. Create administrative templates.
 E. Provide administrative templates to the systems administrators that are responsible for creating Group Policy for the applications.

3. Script policies can be set for which of the following events? (Choose all that apply.)
 A. Logon
 B. Logoff
 C. Startup
 D. Shutdown

4. John is developing a standards document for settings that are allowed by systems administrators in an Active Directory environment. He wants to maintain as much flexibility as possible in the area of Group Policy settings. In which of the following languages can script policies be written? (Choose all that apply.)
 A. Visual Basic Scripting Edition (VBScript)
 B. JScript
 C. Other Windows Script Host (WSH) languages
 D. Batch files
5. The process of assigning permissions to set Group Policy for objects within an OU is known as
 A. Promotion
 B. Inheritance
 C. Delegation
 D. Filtering

6. You are a systems administrator for a medium-sized Active Directory environment. Specifically, you are in charge of administering all objects that are located within the North America OU. The North America OU contains the Corporate OU. You want to do the following:
 - Create a GPO that applies to all users within the North America OU except for those located within the Corporate OU.
 - Be able to easily apply all Group Policy settings to users within the Corporate OU, should the need arise in the future.
 - Accomplish this task with the least amount of administrative effort.

 Which two of the following options meet these requirements?
 A. Enable the Inheritance functionality of GPOs for all OUs within the North America OU.
 B. Implement delegation of all objects within the North America OU to one administrator and then remove permissions for the Corporate OU. Have this administrator link the GPO to the North America OU.
 C. Create a GPO link for the new policy at the level of the North America OU.
 D. Create special administrative templates for the Corporate OU.
 E. Enable the Block Inheritance option on the Corporate OU.

7. The process by which lower-level Active Directory objects inherit Group Policy settings from higher-level ones is known as
 A. Delegation
 B. Inheritance
 C. Cascading permissions
 D. Overriding

8. To disable GPO settings for a specific security group, which of the following permissions should you apply?
 A. Deny Write
 B. Allow Write
 C. Enable Apply Group Policy
 D. Disable Apply Group Policy
9. Trent is a systems administrator in a medium-sized Active Directory environment. He is responsible for creating and maintaining Group Policy settings. For a specific group of settings, he has the following requirements:

- The settings in the Basic Users GPO should remain defined.
- The settings in the Basic Users GPO should not apply to any users within the Active Directory environment.
- The amount of administrative effort to apply the Basic Users settings to an OU in the future should be minimal.

Which of the following options can Trent use to meet these requirements?

A. Enable the No Override option at the domain level.
B. Enable the Block Policy Inheritance option at the domain level.
C. Remove the link to the Basic Users GPO from all Active Directory objects.
D. Delete the Basic Users GPO.
E. Rename the Basic Users GPO to break its link with any existing Active Directory objects.

10. Which of the following statements is true regarding the actions that occur when a software package is removed from a GPO that is linked to an OU?

A. The application will be automatically uninstalled for all users with the OU.
B. Current application installations will be unaffected by the change.
C. The systems administrator may determine the effect.
D. The current user may determine the effect.

11. GPOs assigned at which of the following level(s) will override GPO settings at the domain level?

A. OU
B. Site
C. Domain
D. Both OU and site

12. A systems administrator wants to ensure that only the GPOs set at the OU level affect the Group Policy settings for objects within the OU. Which option can they use to do this (assuming that all other GPO settings are the defaults)?

A. The Enforced option
B. The Block Policy Inheritance option
C. The Disable option
D. The Deny permission
13. In order to be accessible to other domain controllers, you should place logon/logoff and startup/shutdown scripts in which of the following shares?
 A. Winnt
 B. System
 C. C$
 D. SYSVOL

14. A systems administrator wants to ensure that a particular user will have access to Microsoft Office XP regardless of the computer to which they log on. Which of the following should they do?
 A. Assign the application to all computers within the environment and specify that only this user should have access to it.
 B. Assign the application to the user.
 C. Publish the application to all computers within the environment and specify that only this user should have access to it.
 D. Publish the application to the user.

15. Alicia is a systems administrator for a large organization. Recently, the company has moved most of its workstations and servers to the Windows Server 2008 platform and Alicia wants to take advantage of the new software deployment features of Active Directory. Specifically, she wants to do the following:
 - Make applications available to users through the Add Or Remove Programs item in the Control Panel.
 - Group applications based on functionality or the types of users who might require them.
 - Avoid the automatic installation of applications for users and computers.

Which of the following steps should Alicia take to meet these requirements? (Choose all that apply.)
 A. Create application categories.
 B. Set up a software installation share and assign the appropriate security permissions.
 C. Assign applications to users.
 D. Assign applications to computers.
 E. Create new file extension mappings.
 F. Create application definitions using Active Directory and Group Policy administration tools.

16. You are the systems administrator for 123 Corp. You have been tasked with helping your mobile users find a way to access stored company files. You need to set up a solution that allows your mobile users the flexibility they need to use data stored on local servers within your organization’s network. Which of the following is the best way to do this?
 A. Offline folders
 B. Folder redirection
 C. SYSVOL replication
 D. Folder replication
17. As the administrator responsible for your company’s Active Directory deployment, you are asked to provide a solution for Group Policy management. You need to use a tool that allows you to manage Group Policy forest-wide. Which tool allows you to manage Group Policy across the enterprise, is downloadable from Microsoft, and adds features such as services for backing up Group Policy?

A. Active Directory Sites And Services tool
B. Active Directory Users And Computers tool
C. Group Policy Management Console (GPMC)
D. The Resultant Set of Policy (RSoP) tool

18. Emma wants to make a specific application available on the network. She finds that using Group Policy for software deployment will be the easiest way. She has the following requirements:

- All users of designated workstations should have access to Microsoft Office XP.
- If a user moves to other computers on which Microsoft Office XP is not installed, they should not have access to this program.

Which of the following options should Emma choose to meet these requirements?

A. Assign the application to computers.
B. Assign the application to users.
C. Publish the application to computers.
D. Publish the application to users.

19. You are attempting to add a layer of security in your current domain of about 5 Windows Server 2008 systems and 40 Windows XP Professional workstations. You are asked about using certificates. What system is this technology part of?

A. TKI—temporary-key infrastructure
B. PKI—public-key infrastructure
C. DCS—digital certificate system
D. OTP—one-time passwords

20. You are the lead network administrator for your company. You have been tasked with the responsibility of creating GPOs and linking specific settings to targeted computers. You’ll be using the GPOs to store the settings. You need to link specific settings to specific OUs and you may need to link them elsewhere. What are the other two levels in which you can link settings within Active Directory? (Choose all that apply.)

A. Sites
B. Groups
C. Computers
D. Domains
Answers to Review Questions

1. A, B, C, D. GPOs can be set at all of the levels listed. You cannot set GPOs on security principals such as users or groups.

2. D, E. Administrative templates are used to specify the options available for setting Group Policy. By creating new administrative templates, Ann can specify which options are available for the new applications. She can then distribute these templates to other systems administrators in the environment.

3. A, B, C, D. Script policies can be set for any of the events listed.

4. A, B, C, D. WSH can be used with any of these languages. Standard batch files can also be used.

5. C. The Delegation of Control Wizard can be used to allow other systems administrators permission to add GPO links to an Active Directory object.

6. C, E. The easiest way to accomplish this task is to create GPO links at the level of the parent OU (North America) and block inheritance at the level of the child OU (Corporate).

7. B. Inheritance is the process by which lower-level Active Directory objects inherit GPO settings from higher-level ones. You should always be aware of how inheritance will apply to your Active Directory hierarchy when you are configuring GPOs.

8. D. To disable the application of Group Policy on a security group, you should disable the Apply Group Policy option. This is particularly useful when you don’t want GPO settings to apply to a specific group, even though that group may be in an OU that includes the GPO settings.

9. C. Systems administrators can disable a GPO without removing its link to Active Directory objects. This prevents the GPO from having any effects on Group Policy but leaves the GPO definition intact so that it can be enabled at a later date.

10. C. The systems administrator can specify whether the application will be uninstalled or if future installations will be prevented.

11. A. GPOs at the OU level take precedence over GPOs at the domain level. GPOs at the domain level, in turn, take precedence over GPOs at the site level.

12. B. The Block Policy Inheritance option prevents group policies of higher-level Active Directory objects from applying to lower-level objects as long as the Enforced option is not set.

13. D. By default, the contents of the SYSVOL share are made available to all domain controllers. Therefore, you should place scripts in these directories.

14. B. Assigning the application to the user ensures that the user will have access to Microsoft Office XP, regardless of the computer they use. The other options would mean that the user either wouldn’t have access to the application at all, or would need to log on to a specific computer.
15. A, B, F. Alicia should first create an application share from which programs can be installed. Then, she can define which applications are available on the network. The purpose of application categories is to logically group applications in the Add Or Remove Programs item in the Control Panel. The other options can result in the automatic installation of applications for users and computers (something that she wants to avoid).

16. A. Folder redirection and offline folders are different features. The way that Windows Server 2008 folder redirection works is that the system uses a pointer that moves the folders you want to a location you specify. When data is needed, it’s available, but once the user is mobile (not local), the data is no longer accessible. A way to fix this is to use the Offline Folders feature, which allows you to keep folders with information synchronized—thus you’d have a local copy on your local system that you’d take with you while you were on the move and you’d be able to synchronize it with a copy on the server when you returned. Copies of the data stay the same, which is a perfect feature for mobile users, whereas folder redirection provides no benefit for the mobile user.

17. C. The GPMC is a Microsoft-based downloadable tool that allows you full control and flexibility when you’re deploying and managing Group Policy; it also provides add-on features and backup services.

18. A. Assigning the application to the computer will ensure that all users who access the workstation will have access to Microsoft Office XP. You cannot publish to computers, and assigning or publishing the application to users would mean that only those users could use the application and they would be able to access it from any machine on the network.

19. B. PKI stands for public-key infrastructure. Certificates are part of PKI, which is used to add a layer of security into your client/server infrastructure. The rest of the answers are incorrect distracters.

20. A, D. Group Policy settings are kept in GPOs. GPOs can be linked to sites, domains, and OUs.
Chapter 9

Planning Security for Active Directory

MICROSOFT EXAM OBJECTIVES COVERED IN THIS CHAPTER:

✓ Creating and Maintaining Active Directory Objects
 ▪ Maintain Active Directory accounts. May include but is not limited to: configure group membership; delegation; AGDLP/AGGUDLP; deny domain local group; local vs. domain; Protected Admin; disabling accounts vs. deleting accounts; deprovisioning; contacts; creating organizational units (OUs); delegation of control
 ▪ Configure GPO templates. May include but is not limited to: user rights; ADMX Central Store; administrative templates; security templates; restricted groups; security options; starter GPOs; shell access policies
 ▪ Configure audit policy by using GPOs. May include but is not limited to: audit logon events; audit account logon events; audit policy change; audit access privilege use; audit directory service access; audit object access
 ▪ Configure account policies. May include but is not limited to: domain password policy; account lockout policy; fine-grain password policies

✓ Configuring Active Directory Certificate Services
 ▪ Manage enrollments. May include but is not limited to: network device enrollment service (NDES); autoenrollment; Web enrollment; smart card enrollment; creating enrollment agents
So far in this book we have covered many important aspects of Active Directory. The most important aspect of any network, including Active Directory, is security. If your network is not secure, then hackers (internal or external) can make your life as an IT member a living nightmare.

All network operating systems (NOSs) offer some way to grant or deny access to resources, such as files and printers. Active Directory is no exception. You can define fundamental security objects through the use of the users, groups, and computers security principals. Then you can allow or disallow access to resources by granting specific permissions to each of these objects.

In this chapter, you’ll learn how to implement security within Active Directory. By using Active Directory tools, you can quickly and easily configure the settings that you require in order to protect information.

Proper planning for security permissions is an important prerequisite of setting up Active Directory. Security is always one of the greatest concerns as an IT administrator.

If your security settings are too restrictive, users may not be able to perform their job functions. Worse yet, they may try to circumvent security measures. They may even complain to their management teams, and eventually you will receive these complaints. On the other end of the spectrum, if security permissions are too lax, users may be able to access and modify sensitive company resources.

You may continuously try to seek balance—to have enough security and, at the same time, be somewhat transparent to the end users, who simply want to do their jobs and not be bothered by what’s between the lines.

You should have a security policy that states what is expected of every computer user in your company. Fine-tuning Active Directory to comply with your security policy and allowing end users to function without an issue should be your goal.

You should know how to use Active Directory to apply permissions to resources on the network. An administrator should pay particular attention to the evaluation of permissions when applied to different groups and the flow of permissions through the organizational units (OUs) via group policies. With all of this in mind, let’s start looking at how you can manage security within Active Directory.

In order to complete the exercises in this chapter, you should understand the basics of working with Active Directory objects. If you are not familiar with creating and managing users, groups, computers, and OUs, you should review the information in Chapter 7, “Administering Active Directory,” before you continue.
Active Directory Security Overview

One of the fundamental design goals for Active Directory is to define a single, centralized repository of users and information resources. Active Directory records information about all of the users, computers, and resources on your network. Each domain acts as a security boundary, and members of the domain (including workstations, servers, and domain controllers) share information about the objects within them.

The information stored within Active Directory determines which resources are accessible to which users. Through the use of permissions that are assigned to Active Directory objects, you can control all aspects of network security.

Throughout this chapter, you'll learn the details of security as it pertains to Active Directory. Note, however, that Active Directory security is only one aspect of overall network security. You should also be sure that you have implemented appropriate access control settings for the filesystem, network devices, and other resources. Let’s start by looking at the various components of network security, which include working with security principals, and managing security and permissions, access control lists (ACLs), and access control entries (ACEs).

A fact that you should always keep in mind while you are setting up a network is that 80 percent of all hacks on a network are internal. This means that internal permissions and security (as well as external) need to be as strong as possible while still allowing users to do their jobs.

Understanding Security Principals

Security principals are Active Directory objects that are assigned security identifiers (SIDs). A SID is a unique identifier that is used to manage any object to which permissions can be assigned. Security principals are assigned permissions to perform certain actions and access certain network resources.

The basic types of Active Directory objects that serve as security principals include the following:

User accounts User accounts identify individual users on your network by including information such as the user's name and their password. User accounts are the fundamental unit of security administration.

Groups There are two main types of groups: security groups and distribution groups. Both types can contain user accounts. Systems administrators use security groups to ease the management of security permissions. They use distribution groups, on the other hand, solely to send email. Distribution groups are not security principals. You'll see the details of groups in the next section.

Computer accounts Computer accounts identify which client computers are members of particular domains. Because these computers participate in the Active Directory database,
systems administrators can manage security settings that affect the computer. They use computer accounts to determine whether a computer can join a domain and for authentication purposes. As you'll see later in this chapter, systems administrators can also place restrictions on certain computer settings to increase security. These settings apply to the computer and, therefore, also apply to any user who is using it (regardless of the permissions granted to the user account).

Note that other objects—such as OUs—do not function as security principals. What this means is that you can apply certain settings (such as Group Policy) on all of the objects within an OU; however, you cannot specifically set permissions with respect to the OU itself. The purpose of OUs is to logically organize other Active Directory objects based on business needs, add a needed level of control for security, and create an easier way to delegate.

You can manage security by performing the following actions with security principals:

- You can assign them permissions to access various network resources.
- You can give them user rights.
- You can track their actions through auditing (covered later in this chapter).

The three types of security principals—user accounts, groups, and computer accounts—form the basis of the Active Directory security architecture. As a systems administrator, you will likely spend a portion of your time managing permissions for these objects.

It is important to understand that, since a unique SID defines each security principal, deleting a security principal is an irreversible process. For example, if you delete a user account and then later re-create one with the same name, you need to reassign permissions and group membership settings for the new account. Once a user account is deleted, its SID is deleted.

Users and groups are two types of fundamental security principals employed for security administration. In the following sections, you’ll learn how users and groups interact and about the different types of groups that you can create.

Types of Groups

When dealing with groups, you should make the distinction between local security principals and domain security principals:

- You use local users and groups to assign the permissions necessary to access the local machine. For example, you may assign the permissions you need to reboot a domain controller to a specific local group.
- Domain users and groups, on the other hand, are used throughout the domain. These objects are available on any of the computers within the Active Directory domain and between domains that have a trust relationship.
Here are the two main types of groups used in Active Directory:

Security groups Security groups are considered security principals. They can contain user accounts. To make administration simpler, systems administrators usually grant permissions to groups. This allows you to change permissions easily at the Active Directory level (instead of at the level of the resource on which the permissions are assigned).

You can also place Active Directory Contact objects within security groups, but security permissions will not apply to them.

Distribution groups Distribution groups are not considered security principals, because they do not have SIDs. As mentioned earlier, they are used only for the purpose of sending email messages. You can add users to distribution groups just as you would add them to security groups. You can also place distribution groups within OUs so they are easier to manage. You will find them useful, for example, if you need to send email messages to an entire department or business unit within Active Directory.

Understanding the differences between security and distribution groups is important in an Active Directory environment. For the most part, systems administrators use security groups for daily administration of permissions. On the other hand, systems administrators who are responsible for maintaining email distribution lists generally use distribution groups to logically group members of departments and business units. (A system administrator can also email all of the users within a security group, but to do so, they would have to specify the email addresses for the accounts.)

When you are working in Windows 2000 Native, Server 2003, or Server 2008 functional level domains, you can convert security groups to or from distribution groups. When group types are running in a Windows 2000 Mixed domain functional level, you cannot change them.

> It is vital that you understand Group types when you are getting ready to take the Microsoft exams. Microsoft likes to include trick questions about putting permissions on Distribution groups. Remember, only Security groups can have permissions assigned to them.

Group Scope

In addition to being classified by type, each group is also given a specific scope. The scope of a group defines two characteristics. First, it determines the level of security that applies to a group. Second, it determines which users can be added to the group. Group scope is an important concept in network environments because it ultimately defines which resources users are able to access.
The three types of group scope are as follows:

Domain local The scope of *domain local groups* extends as far as the local machine. When you're using the Active Directory Users And Computers tool, domain local accounts apply to the computer for which you are viewing information. Domain local groups are used to assign permissions to local resources, such as files and printers. They can contain global groups, universal groups, and user accounts.

Global The scope of *global groups* is limited to a single domain. Global groups may contain any of the users that are a part of the Active Directory domain in which the global groups reside. Global groups are often used for managing domain security permissions based on job functions. For example, if you need to specify permissions for the Engineering Department, you could create one or more global groups (such as EngineeringManagers and Engineering-Developers). You could then assign security permissions to each group for any of the resources within the domain.

Universal *Universal groups* can contain users from any domains within an Active Directory forest. Therefore, system administrators use them to manage security across domains. Universal groups are available only when you're running Active Directory in the Windows 2000 Native, Windows Server 2003, or Windows Server 2008 domain functional level. When you are managing multiple domains, it often helps to group global groups within universal groups. For instance, if you have an Engineering global group in the `research.stellacon.com` domain and an Engineering global group in the `asia.stellacon.com` domain, you can create a universal AllEngineers group that contains both of the global groups. Now, whenever you must assign security permissions to all engineers within the organization, you need only assign permissions to the AllEngineers universal group.

For domain controllers to process authentication between domains, information about the membership of universal groups is stored in the Global Catalog (GC). Keep this in mind if you ever plan to place users directly into universal groups and bypass global groups because all of the users will be enumerated in the GC, which will impact size and performance.

Fortunately, universal group credentials are cached on domain controllers that universal group members use to log on. This process is called universal group membership caching (discussed in Chapter 4: Installing and Managing Trees and Forests). The cached data is obtained by the domain controller whenever universal group members log on, and then it is retained on the domain controller for eight hours by default. This is especially useful for smaller locations, such as branch offices, that run less expensive domain controllers. Most domain controllers at these locations cannot store a copy of the entire GC, and frequent calls to the nearest GC would require an inordinate amount of network traffic.

When you create a new group using the Active Directory Users And Computers tool, you must specify the scope of the group. Figure 9.1 shows the New Object - Group dialog box and the available options for the group scope.
As you can see, the main properties for each of these group types are affected by whether Active Directory is running in Windows 2000 Mixed, Windows 2000 Native, Server 2003, or Server 2008 domain functional level (Figure 9.1 shows that you are in Native mode because all three options are available). Each of these scope levels is designed for a specific purpose and will ultimately affect the types of security permissions that you can assign to them.

The following are limitations on group functionality when you are running in Windows 2000 Mixed domain functional level:

- Universal security groups are not available.
- You are not allowed to change the scope of groups.
- Limitations to group nesting exist. Specifically, the only nesting allowed is global groups contained in domain local groups.

When you are running in Native mode domains, you can make the following group scope changes:

- You can change domain local groups to a universal group. You can make this change only if the domain local group does not contain any other domain local groups.
- You can change a global group to a universal group. You can only make this change if the global group is not a member of any other global groups.

Universal groups themselves cannot be converted into any other group scope type. However, changing group scope can be helpful when your security administration or business needs change. You can change group scope easily using the Active Directory Users And Computers tool. To do so, access the properties of the group. As shown in Figure 9.2, you can make a group scope change by clicking one of the options.
 Systems administrators use built-in domain local groups to perform administrative functions on the local server. Because these have preassigned permissions and privileges, they allow systems administrators to easily assign common management functions. Figure 9.3 shows the default built-in groups that are available on a Windows Server 2008 domain controller.
The list of built-in local groups includes some of the following:

Account Operators These users can create and modify domain user and group accounts. Members of this group are generally responsible for the daily administration of Active Directory.

Administrators Members of the Administrators group, by default, are given full permissions to perform any functions within the Active Directory domain and on the local computer. This means they can access all files and resources that reside on any server within the domain. As you can see, this is a very powerful account.

In general, you should restrict the number of users who are included in this group because most common administration functions do not require this level of access.

Backup Operators One of the problems associated with backing up data in a secure network environment is that you need to provide a way to bypass standard file system security so you can copy files. Although you could place users in the Administrators group, doing so usually provides more permissions than necessary. Members of the Backup Operators group can bypass standard filesystem security for the purpose of backup and recovery only. They cannot, however, directly access or open files within the filesystem.

Generally, backup software applications and data use the permissions assigned to the Backup Operators group.

Certificate Service DCOM Access Members of the Certificate Service DCOM Access group can connect to certificate authority servers in the Enterprise.

Cryptographic Operators Members of the Cryptographic Operators group are authorized to perform cryptographic operations. Cryptography allows the use of codes to convert data, which then allows a specific recipient to read it using a key.

Guests Typically, you use the Guests group to provide access to resources that generally do not require security. For example, if you have a network share that provides files that should be made available to all network users, you can assign permissions to allow members of the Guest group to access those files.

Print Operators By default, members of the Print Operators group are given permissions to administer all of the printers within a domain. This includes common functions such as changing the priority of print jobs and deleting items from the print queue.

Replicator The Replicator group allows files to be replicated among the computers in a domain. You can add accounts used for replication-related tasks to this group to provide those accounts with the permissions they need to keep files synchronized across multiple computers.

Server Operators A common administrative task is managing server configuration. Members of the Server Operators group are granted the permissions they need to manage services, shares, and other system settings.

Users The Users built-in domain local group is used to administer security for most network accounts. Usually, you don’t give this group many permissions and use it to apply security settings for most employees within an organization.

The remaining built-in groups, such as Network Configuration Operators and Performance Monitor Users, are beyond the scope of this book and are not part of the 70-640 exam.
Windows Server 2008 also includes many different default groups you can find in the Users folder. As shown in Figure 9.4, these groups are of varying scopes, including domain local, global, and universal groups. You'll see the details of these groups in the next section.

FIGURE 9.4 Contents of the default Users folder

Three important user accounts are created during the promotion of a domain controller:

- The Administrator account is assigned the password a systems administrator provides during the promotion process, and it has full permissions to perform all actions within the domain.

- The Guest account is disabled by default. The purpose of the Guest account is to provide anonymous access to users who do not have an individual logon and password to use within the domain. Although the Guest account might be useful in some situations, it is generally recommended that this account be disabled to increase security.

- Only the operating system uses the krbtgt or Key Distribution Center Service account for Kerberos authentication while it is using **DCPromo.exe**. This account is disabled by default. Unlike other user accounts, the krbtgt account cannot be used to log on to the domain, and therefore it does not need to be enabled. Since only the operating system uses this account, you do not need to worry about hackers gaining access by using this account.
Predefined Global Groups

As we mentioned earlier in this chapter, you use global groups to manage permissions at the domain level. Members of each of these groups can perform specific tasks related to managing Active Directory.

The following predefined global groups are installed in the Users folder:

Cert Publishers Certificates are used to increase security by allowing for strong authentication methods. User accounts are placed within the Cert Publishers group if they must publish security certificates. Generally, Active Directory security services use these accounts.

Domain Computers All of the computers that are members of the domain are generally members of the Domain Computers group. This includes any workstations or servers that have joined the domain, but it does not include the domain controllers.

Domain Admins Members of the Domain Admins group have full permissions to manage all of the Active Directory objects for this domain. This is a powerful account; therefore, you should restrict its membership to only those users who require full permissions.

Domain Controllers All of the domain controllers for a given domain are generally included within this group.

Domain Guests Generally, by default, members of the Domain Guests group are given minimal permissions with respect to resources. Systems administrators may place user accounts in this group if they require only basic access or temporary permissions within the domain.

Domain Users The Domain Users group usually contains all of the user accounts for the given domain. This group is generally given basic permissions to resources that do not require higher levels of security. A common example is a public file share.

Enterprise Admins Members of the Enterprise Admins group are given full permissions to perform actions within the entire domain forest. This includes functions such as managing trust relationships and adding new domains to trees and forests.

Group Policy Creator Owners Members of the Group Policy Creator Owners group are able to create and modify Group Policy settings for objects within the domain. This allows them to enable security settings on OUs (and the objects that they contain).

Schema Admins Members of the Schema Admins group are given permissions to modify the Active Directory schema. As a member of Schema Admins, you can create additional fields of information for user accounts. This is a very powerful function because any changes to the schema will be propagated to all of the domains and domain controllers within an Active Directory forest. Furthermore, you cannot undo changes to the schema (although you can disable some).

In addition to these groups, you can create new ones for specific services and applications that are installed on the server (you’ll notice the list in Figure 9.4 includes more than just the ones in the preceding list). Specifically, services that run on domain controllers and servers will
be created as security groups with domain local scope. For example, if a domain controller is running the DNS service, the DNSAdmins and DNSUpdateProxy groups become available. In addition, there are two read-only domain controller (RODC) local groups: the Allowed RODC Password Replication and the Denied RODC Password Replication. Similarly, if you install the DHCP service, it automatically creates the DHCPUsers and DHCPAdministrators groups. The purpose of these groups depends on the functionality of the applications being installed.

Foreign Security Principals

In environments that have more than one domain, you may need to grant permissions to users who reside in multiple domains. Generally, you manage this using Active Directory trees and forests. However, in some cases, you may want to provide resources to users who belong to domains that are not part of the forest.

Active Directory uses the concept of *foreign security principals* to allow permissions to be assigned to users who are not part of an Active Directory forest. This process is automatic and does not require the intervention of systems administrators. You can then add the foreign security principals to domain local groups, which, in turn, you can grant permissions for resources within the domain. You can view a list of foreign security principals by using the Active Directory Users And Computers tool. Figure 9.5 shows the contents of the ForeignSecurityPrincipals folder.
Managing Security and Permissions

Now that you understand the basic issues, terms, and Active Directory objects that pertain to security, it's time to look at how you can apply this information to secure your network resources. The general practice for managing security is to assign users to groups and then grant permissions and logon parameters to the groups so that they can access certain resources.

For management ease and to implement a hierarchical structure, you can place groups within OUs. You can also assign Group Policy settings to all of the objects contained within an OU. By using this method, you can combine the benefits of a hierarchical structure (through OUs) with the use of security principals. Figure 9.6 provides a diagram of this process.

FIGURE 9.6 An overview of security management

The primary tool you use to manage security permissions for users, groups, and computers is the Active Directory Users And Computers tool. Using this tool, you can create and manage Active Directory objects and organize them based on your business needs. Common tasks for many systems administrators might include the following:

- Resetting a user’s password (for example, in cases where they forget their password)
- Creating new user accounts (when, for instance, a new employee joins the company)
- Modifying group memberships based on changes in job requirements and functions
- Disabling user accounts (when, for example, users will be out of the office for long periods of time and will not require network resource access)

Once you’ve properly grouped your users, you need to set the actual permissions that affect the objects within Active Directory. The actual permissions available vary based on the type of object. Table 9.1 provides an example of some of the permissions that you can apply to various Active Directory objects and an explanation of what each permission does.
Using ACLs and ACEs

Each object in Active Directory has an access control list (ACL). The ACL is a list of user accounts and groups that are allowed to access the resource. For each ACL, there is an access control entry (ACE) that defines what a user or a group can actually do with the resource. Deny permissions are always listed first. This means that if users have Deny permissions through user or group membership, they will not be allowed to access the object, even if they have explicit Allow permissions through other user or group permissions. Figure 9.7 shows an ACL for the Sales OU.

TABLE 9.1 Permissions of Active Directory Objects

<table>
<thead>
<tr>
<th>Permission</th>
<th>Explanation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Control Access</td>
<td>Changes security permissions on the object</td>
</tr>
<tr>
<td>Create Child</td>
<td>Creates objects within an OU (such as other OUs)</td>
</tr>
<tr>
<td>Delete Child</td>
<td>Deletes child objects within an OU</td>
</tr>
<tr>
<td>Delete Tree</td>
<td>Deletes an OU and the objects within it</td>
</tr>
<tr>
<td>List Contents</td>
<td>Views objects within an OU</td>
</tr>
<tr>
<td>List Object</td>
<td>Views a list of the objects within an OU</td>
</tr>
<tr>
<td>Read</td>
<td>Views properties of an object (such as a username)</td>
</tr>
<tr>
<td>Write</td>
<td>Modifies properties of an object</td>
</tr>
</tbody>
</table>

Using ACLs and ACEs

Each object in Active Directory has an access control list (ACL). The ACL is a list of user accounts and groups that are allowed to access the resource. For each ACL, there is an access control entry (ACE) that defines what a user or a group can actually do with the resource. Deny permissions are always listed first. This means that if users have Deny permissions through user or group membership, they will not be allowed to access the object, even if they have explicit Allow permissions through other user or group permissions. Figure 9.7 shows an ACL for the Sales OU.

FIGURE 9.7 The ACL for an OU named Sales
The Security tab is only enabled if you selected the Advanced Features option from the View menu in the Active Directory Users And Computers tool.

Real World Scenario

Using Groups Effectively

You are a new systems administrator for a medium-sized organization, and your network spans a single campus-type environment. The previous administrator whom you replaced was the main person who migrated the network from Windows 2000 to Windows Server 2008. No one is really complaining about the network, and everyone seems happy with their new workstations. The environment is very collegial, with most employees on a first-name basis, and a great deal of your job is done in the hallway as you bump into people. As you familiarize yourself with the network, you soon realize that the previous administrator had a very ad hoc approach to administration. Many of the permissions to resources had been given to individual accounts as people asked for them. There doesn’t seem to be any particular strategy in the design of the directory or the allocation of resources.

In one of your meetings with management, they tell you that the company has acquired another company, and if this acquisition goes well, several more acquisitions will follow. Management tells you about these sensitive plans because they do not want any hiccups in the information system as these new organizations are absorbed into the existing company.

You immediately realize that management practices of the past for this network have to vanish, and they need to be replaced with the best practices that have been developed for networks over the years. One of the fundamental practices you need to establish for this environment is the use of groups to apply permissions and give privileges to users throughout the network.

It is quite simple to give permissions individually, and in some cases, it seems like overkill to create a group, give permissions to the group, and then add a user to the group. But using group-based permissions really pays off in the long run, regardless of how small your network is today. One constant in the networking world is that networks grow. And when they grow, it is much easier to add users to a well-thought-out system of groups and consistently applied policies and permissions than it is to patch these elements together for each individual user.

Don’t get caught up in the “easy” way of dealing with each request as it comes down the pike. Take the time to figure out how the system will benefit from a more structured approach. Visualize your network as already large with numerous accounts, even if it is still small; this way, when it grows, you will be well positioned to manage the network as smoothly as possible.
Implementing Active Directory Security

So far, you have looked at many different concepts that are related to security within Active Directory. You began by exploring security principals and how they form the basis for administering Active Directory security. Then, you considered the purpose and function of groups, how group scopes can affect how these groups work, and how to create a list of the predefined users and groups for new domains and domain controllers. Based on all of this information, it’s time to see how you can implement Active Directory security.

In this section, you’ll take a look at how you can create and manage users and groups. The most commonly used tool for working with these objects is the Active Directory Users And Computers tool. Using this tool, you can create new user and group objects within the relevant OUs of your domain, and you can modify group membership and group scope.

In addition to these basic operations, you can use some additional techniques to simplify the administration of users and groups. One method involves using user templates. Additionally, you’ll want be able to specify who can make changes to user and group objects. That’s the purpose of delegation. Both of these topics are covered later in this section.

Let’s start with the basics. In Exercise 9.1, you learn how to create and manage users and groups.

EXERCISE 9.1

Creating and Managing Users and Groups

1. Open the Active Directory Users And Computers tool.

2. Create the following top-level OUs:

 Sales
 Marketing
 Engineering
 HR

3. Create the following User objects within the Sales container (use the defaults for all fields not listed):

 a. First Name: John
 Last Name: Sales

 WARNING: This exercise involves creating new OUs and user accounts within an Active Directory domain. Be sure that you are working in a test environment to avoid any problems that might occur due to the changes that you make.
EXERCISE 9.1 (continued)

User Logon Name: JSales

b. First Name: Linda
 Last Name: Manager
 User Logon Name: LManager

4. Create the following User objects within the Marketing container (use the defaults for all fields not listed):
 a. First Name: Jane
 Last Name: Marketing
 User Logon Name: JMarketing
 b. First Name: Monica
 Last Name: Manager
 User Logon Name: MManager

5. Create the following User object within the Engineering container (use the defaults for all fields not listed):
 First Name: Bob
 Last Name: Engineer
 User Logon Name: BEngineer
6. Right-click the HR container, and select New > Group. Use the name Managers for the group, and specify Global for the group scope and Security for the group type. Click OK to create the group.

7. To assign users to the Managers group, right-click the Group object and select Properties. Change to the Members tab, and click Add. Enter Linda Manager and Monica Manager, and then click OK. You will see the group membership list. Click OK to finish adding the users to the group.

8. When you are finished creating users and groups, close the Active Directory Users And Computers tool.
Notice that you can add users to groups regardless of the OU in which they’re contained. In Exercise 9.1, for example, you added two user accounts from different OUs into a group that was created in a third OU. This type of flexibility allows you to easily manage user and group accounts based on your business organization.

The Active Directory Users And Computers tool also allows you to perform common functions by simply right-clicking an object and selecting actions from the context menu. For example, you could right-click a user account and select Add Members To Group to quickly change group membership. You even have the ability in Active Directory Users And Computer to drag a user from one OU and drop them into another.

You may have noticed that creating multiple users can be a fairly laborious and a potentially error-prone process. As a result, you are probably ready to take a look at a better way to create multiple users—by using user templates, discussed in the next section.

Using User Templates

Sometimes you will need to add several users with the same security settings. Rather than creating each user from scratch and making configuration changes to each one manually, you can create one user template, configure it, and copy it as many times as necessary. Each copy retains the configuration, group membership, and permissions of the original, but you must specify a new username, password, and full name to make the new user unique.

In Exercise 9.2, you create a user template, make configuration changes, and create a new user based on the template. This exercise shows you that the new user you create will belong to the same group as the user template that you copied it from. You should have completed Exercise 9.1 before you begin this one.

EXERCISE 9.2

Creating and Using User Templates

1. Open the Active Directory Users And Computers tool.

2. Create the following User object within the Sales container (use the defaults for all fields not listed):
 - First Name: *Sales User*
 - Last Name: *Template*
 - User Logon Name: *SalesUserTemplate*

3. Create a new global security group called *Sales Users*, and add SalesUserTemplate to the group membership.

4. Right-click the SalesUserTemplate user object and select Copy from the context menu.
5. Enter the username, first name, and last name for the new user.

![Copy Object - User dialog box](image)

6. Click the Next button to move on to the password screen and enter the new user’s password information. Close the Copy Object - User dialog box when you’re done.

7. Right-click the user you created in step 5, select Properties, and click the Member Of tab.

8. Verify that the new user is a member of the Sales Users group.
Delegating Control of Users and Groups

A common administrative function related to the use of Active Directory involves managing users and groups. You can use OUs to logically group objects so that you can easily manage them. Once you have placed the appropriate Active Directory objects within OUs, you are ready to delegate control of these objects.

Delegation is the process by which a higher-level security administrator assigns permissions to other users. For example, if Admin A is a member of the Domain Admins group, he is able to delegate control of any OU within the domain to Admin B. You can access the Delegation of Control Wizard through the Active Directory Users And Computers tool. You can use it to quickly and easily perform common delegation tasks. The wizard walks you through the steps of selecting for which object(s) you want to perform delegation, what permission you want to allow, and which users will have those permissions.

Exercise 9.3 walks through the steps required to delegate control of OUs. In order to complete the steps in this exercise, you must have already completed Exercise 9.1.

EXERCISE 9.3

Delegating Control of Active Directory Objects

1. Open the Active Directory Users And Computers tool.
2. Create a new user within the Engineering OU, using the following information (use the default settings for any fields not specified):
 - First Name: Robert
 - Last Name: Admin
 - User Logon Name: radmin
3. Right-click the Sales OU, and select Delegate Control. This starts the Delegation of Control Wizard. Click Next.
EXERCISE 9.3 (continued)

4. To add users and groups to which you want to delegate control, click the Add button. In the Add dialog box, enter Robert Admin for the name of the user to add. Note that you can specify multiple users or groups using this option.

5. Click OK to add the account to the delegation list, which is shown in the Users Or Groups page. Click Next to continue.

6. On the Tasks To Delegate page, you must specify which actions you want to allow the selected user to perform within this OU. Select the Delegate The Following Common Tasks option, and place a check mark next to the following options:

- Create, Delete, And Manage User Accounts
- Reset User Passwords And Force Password Change At Next Logon
- Read All User Information
- Create, Delete And Manage Groups
- Modify The Membership Of A Group
Using Group Policy for Security

EXERCISE 9.3 (continued)

7. Click Next to continue. The wizard provides you with a summary of the selections that you have made on the Completing The Delegation Of Control Wizard page. To complete the process, click Finish to have the wizard commit the changes.

8. When you are finished, close the Active Directory Users And Computers tool.

Using Group Policy for Security

As discussed in Chapter 8, “Configuring Group Policy Objects,” a very useful and powerful feature of Active Directory is a technology known as a Group Policy. Through the use of Group Policy settings, systems administrators can assign literally hundreds of different settings and options for users, groups, and OUs. Specifically, in relation to security, you can use many different options to control how important features such as password policies, user rights, and account lockout settings can be configured.

The general process for making these settings is to create a Group Policy object (GPO) with the settings that you want, and to then link it to an OU or other Active Directory object.

Table 9.2 lists many Group Policy settings that are relevant to creating a secure Active Directory environment. Note that this list is not complete—many other options are available through Windows Server 2008’s administrative tools.
Table 9.2 Group Policy Settings Used for Security Purposes

<table>
<thead>
<tr>
<th>Setting Section</th>
<th>Setting Name</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Account Policies ➤</td>
<td>Enforce PasswordHistory</td>
<td>Specifies how many passwords will be remembered. This option prevents users from reusing the same passwords, whenever they're changed.</td>
</tr>
<tr>
<td>Password Policy</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Account Policies ➤</td>
<td>Minimum Password Length</td>
<td>Prevents users from using short, weak passwords by specifying the minimum number of characters that the password must include.</td>
</tr>
<tr>
<td>Password Policy</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Account Policies ➤</td>
<td>Account Lockout Threshold</td>
<td>Specifies how many bad password attempts will be entered before the account gets locked out.</td>
</tr>
<tr>
<td>Account Lockout Policy</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Account Policies ➤</td>
<td>Account LockoutDuration</td>
<td>Specifies how long an account will remain locked out after too many bad password attempts have been entered. By setting this option to a reasonable value (such as “30 minutes”), you can reduce administrative overhead while still maintaining fairly strong security.</td>
</tr>
<tr>
<td>Account Lockout Policy</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Account Policies ➤</td>
<td>Reset Account Lockout Counter After</td>
<td>Specifies how long the Account Lockout Threshold counter will hold failed logon attempts before resetting to 0.</td>
</tr>
<tr>
<td>Account Lockout Policy</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Local Policies ➤</td>
<td>Accounts: RenameAdministrator Account</td>
<td>Often, when trying to gain unauthorized access to a computer, individuals attempt to guess the Administrator password. One method for increasing security is to rename this account so that no password allows entry using this logon.</td>
</tr>
<tr>
<td>Security Options</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Local Policies ➤</td>
<td>Domain Controller: Allow Server Operators To Schedule Tasks</td>
<td>This option specifies whether members of the built-in Server Operators group are allowed to schedule tasks on the server.</td>
</tr>
<tr>
<td>Security Options</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Using Group Policy for Security

You can use several different methods to configure Group Policy settings using the tools included with Windows Server 2008. Exercise 9.4 walks through the steps required to create a basic Group Policy for the purpose of enforcing security settings. In order to complete the steps of this exercise, you must have already completed Exercise 9.1.

TABLE 9.2 Group Policy Settings Used for Security Purposes

<table>
<thead>
<tr>
<th>Setting Section</th>
<th>Setting Name</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Local Policies ➔ Security Options</td>
<td>Interactive Logon: Do Not Display Last User Name</td>
<td>Increases security by not displaying the name of the last user who logged into the system.</td>
</tr>
<tr>
<td>Local Policies ➔ Security Options</td>
<td>Shutdown: Allow System To Be Shut Down Without Having To Log On</td>
<td>Allows systems administrators to perform remote shutdown operations without logging on to the server.</td>
</tr>
</tbody>
</table>

You can use several different methods to configure Group Policy settings using the tools included with Windows Server 2008. Exercise 9.4 walks through the steps required to create a basic Group Policy for the purpose of enforcing security settings. In order to complete the steps of this exercise, you must have already completed Exercise 9.1.

EXERCISE 9.4

Applying Security Policies by Using Group Policy

1. Open the Group Policy Management Console tool.
2. Expand Domains and then click the domain name.
3. In the right pane, right-click the Default Domain Policy and choose Edit.

5. In the right pane, double-click the Minimum Password Length setting.

6. In the Security Policy Setting dialog box, make sure the box labeled Define This Policy Setting option is checked. Increase the Password Must Be At Least value to 8 characters.
Understanding Smart Card Authentication

In the previous section, we discussed password policies and account lockout policies that increase security for Windows Server 2008. However, the standard account logon process is still fairly insecure due to the fact that a malicious attacker only needs a single piece of information—a password—to log on to the network. This problem is compounded by the fact that users or administrators probably would not detect a stolen password until after it had been used by a hacker to break into the system. Smart cards, which are similar in appearance to credit cards, solve both of these problems.

Smart cards store user certificate information in a magnetic strip (barcode) or on a gold chip on a plastic card. As an alternative to the standard username and password logon process, users can insert a smart card into a special smart card reader attached to the computer and enter a unique PIN on the keyboard. This provides the system with a double-verification (two-factor authentication) secure logon (the smart card and the PIN) and reduces the likelihood that a user’s authentication method will be stolen without detection.

To deploy a smart card solution in the enterprise you must have a certificate authority (CA) and a public-key infrastructure (PKI) on your intranet. In each domain, you must configure the

EXERCISE 9.4 (continued)

7. Click OK to return to the Group Policy Management Editor window.

8. Expand the User Configuration, Administrative Templates, and Control Panel objects. Double-click Prohibit Access To The Control Panel, select Enabled, and then click OK.

Understanding Smart Card Authentication

In the previous section, we discussed password policies and account lockout policies that increase security for Windows Server 2008. However, the standard account logon process is still fairly insecure due to the fact that a malicious attacker only needs a single piece of information—a password—to log on to the network. This problem is compounded by the fact that users or administrators probably would not detect a stolen password until after it had been used by a hacker to break into the system. Smart cards, which are similar in appearance to credit cards, solve both of these problems.

Smart cards store user certificate information in a magnetic strip (barcode) or on a gold chip on a plastic card. As an alternative to the standard username and password logon process, users can insert a smart card into a special smart card reader attached to the computer and enter a unique PIN on the keyboard. This provides the system with a double-verification (two-factor authentication) secure logon (the smart card and the PIN) and reduces the likelihood that a user’s authentication method will be stolen without detection.

To deploy a smart card solution in the enterprise you must have a certificate authority (CA) and a public-key infrastructure (PKI) on your intranet. In each domain, you must configure the
security permissions of the Smart Card User, Smart Card Logon, and Enrollment Agent certificate templates to allow smart card users to enroll for certificates. You must also set up the CA to issue smart card certificates and Enrollment Agent certificates.

After you’ve configured your certificate server to meet the requirements for smart card authentication, you can set up a smart card enrollment station and begin issuing smart cards to users. Most organizations that use smart card authentication don’t allow standard authentication at all, so Microsoft provides a Group Policy setting that requires the use of smart cards.

Preparing a Smart Card Certificate Enrollment Station

To begin issuing smart cards, you must prepare a smart card certificate enrollment station where you physically transfer the authentication information to smart cards. You need to install a smart card reader on the enrollment station, which in this case doubles as a smart card writer.

Smart card readers are available from a variety of manufacturers, so you should always make sure that any smart card reader your company purchases is listed on the Windows Server 2008 hardware compatibility list (HCL).

After you’ve properly installed the smart card reader, you need to install an Enrollment Agent certificate on the enrollment station, which you obtain from your CA.

Exercises 9.5 and 9.6 walk you through the process of configuring an enrollment station. Note that you must have access to a company CA configured to meet the requirements of smart card authentication in order to complete this exercise.

We understand that most people reading this book do not have a smart card reader just lying around. If you do not have a smart card reader, do as much of the exercise as possible. This will still give you a feel for the process. If you would like to practice on a smart card reader, you can pick up a reader and a card for very little money on an online auction site.

EXERCISE 9.5

Installing a Certificate for a Smart Card Enrollment Station

1. Log on as the user or administrator who will issue the smart card certificates.

2. Open a Microsoft Management Console (MMC) by selecting Start ➔ Run and entering `mmc` in the Run dialog box.
3. Add the Certificates snap-in by selecting File ➤ Add/Remove Snap-in. Select the Certificates snap-in and click the Add button. When the Certificate Snap-in dialog box appears, choose My User Account and click Finish.

4. Click OK to return to the MMC and display the newly added snap-in.

5. Double-click the Certificates—Current User node in the MMC window.

6. Right-click Personal in the Logical Store Name pane and select All Tasks ➤ Request New Certificate.

7. In the Certificate Request Wizard, select the Enrollment Agent certificate template. Enter a name and description for the template. When prompted, click Install Certificate.
Writing Certificate Information onto Smart Cards

After you’ve prepared the enrollment station to enroll smart cards certificates, you can actually begin writing certificate information to the physical cards. Follow the steps in Exercise 9.6 to enroll a smart card for user logon. Note that you must complete Exercise 9.5 before continuing. In addition, you must have a smart card reader and at least one blank smart card available.

EXERCISE 9.6
Setting Up a Smart Card for User Logon

1. Log on to the computer as the user or administrator that you configured in the previous exercise.
2. Open Internet Explorer by selecting Start ➔ All Programs ➔ Internet Explorer.
3. In the Address field, enter the address of the CA that issues smart card certificates and press Enter.
4. In the Internet Explorer (IE) window, click Request a Certificate, and then click Advanced Certificate Request.
5. Click “Request a certificate for a smart card on behalf of another user using the smart card certificate enrollment station”. If prompted, click Yes to accept the smart card signing certificate.
6. Click Smart Card Logon on the Smart Card Certificate Enrollment Station web page.
7. Under Certification Authority, select the CA you want to issue the smart card certificate.
8. Under Cryptographic Service Provider, select the cryptographic service provider of the smart card’s manufacturer.
9. Under Administrator Signing Certificate, click the Enrollment Agent certificate from the previous exercise.
10. Under User To Enroll, click Select User. Select the user to enroll and click Enroll.
11. When prompted, insert the smart card into the smart card reader and click OK. When prompted, enter a new PIN for the smart card.

Configuring Group Policy Settings for Smart Cards

Now that you’ve seen how to configure a smart card enrollment station and set up smart cards for user logon, you should begin to think about Group Policy settings for enforcing smart card logon. One of the most common mistakes that administrators make when administering a smart card policy is to not require smart card logon at all. This means that users with smart cards can log on with either their smart cards or through the standard username and password.
procedure, which defeats the point of issuing smart cards in the first place! Exercise 9.7 shows you how to configure Group Policy to require smart card authentication.

EXERCISE 9.7

Configuring Group Policy to Require Smart Card Logon

1. Open the Active Directory Users And Computers tool.
2. Create a new top-level OU called **Smart Card Test**.
3. Close the Active Directory Users And Computers tool and open the Group Policy Management Console.
4. Right-click the Smart Card Test OU and select Create A GPO In This Domain And Link It Here.
5. In the New GPO dialog box, enter **Smart Card GPO Test** in the Name box and Click OK. Right-click the new GPO and then click the Edit button.
7. Double-click the Interactive Logon: Require Smart Card policy.
8. Check the box labeled Define This Policy Setting and then select Enabled and click OK.

Understanding Security Configuration and Analysis Tools

The power and flexibility of Windows-based operating systems are both benefits and liabilities. On the plus side, the many configuration options available allow users and systems administrators to modify and customize settings. On the negative side, however, when systems administrators allow all users full functionality, problems can arise. For example, novice users might attempt to delete critical system files or incorrectly uninstall programs to free up disk space.

So how can you prevent these types of problems? One method is to control the types of actions that users can perform. Because you can configure most settings for the Windows Server 2008 interface in the Registry, you could edit the appropriate settings using the `RegEdit` command. However, this process can become quite tedious. Furthermore, manually modifying the Registry is a dangerous process and one that is bound to cause problems due to human error. In order to make creating and applying security settings easier, Microsoft has included the Security Configuration And Analysis utility with Windows Server 2008. They have also built this utility’s functionality into a command-line utility called `secedit.exe`.

Using the Security Configuration And Analysis Utility

You can use the Security Configuration And Analysis utility together with security template files to create, modify, and apply security settings in the Registry. Security templates allow systems administrators to define security settings once and then store this information in a file that can be applied to other computers.

These template files offer a user-friendly way to configure common settings for Windows Server 2008 operating systems. For example, instead of searching through the Registry (which is largely undocumented) for specific keys, a systems administrator can choose from a list of common options. The template file provides a description of the settings, along with information about the Registry key(s) to which the modifications must be made. Templates can be stored and applied to users and computers. For example, we could create three configurations named Level 1, Level 2, and Level 3. We may use the Level 3 template for high-level managers and engineers, and the Level 1 and Level 2 templates for all other users who need only basic functionality.

The overall process for working with the Security Configuration And Analysis utility is as follows:

1. Open or create a security database file.
2. Import an existing template file.
3. Analyze the local computer.
4. Make any setting changes.
5. Save any template changes.
6. Export the new template (optional).
7. Apply the changes to the local computer (optional).

The Security Configuration And Analysis utility has no default icon. In order to access it, you must manually choose this snap-in from within the MMC.

Exercise 9.8 walks you through the steps you need to take to use the Security Configuration And Analysis utility. In this exercise, you will use this utility to create and modify security configurations.

EXERCISE 9.8

Using the Security Configuration And Analysis Utility

1. Click Start ➤ Run, type **mmc**, and press Enter. This opens a blank MMC.

2. In the File menu, select Add/Remove Snap-In. Select the Security Configuration And Analysis item, then click Add. You will see that the Security Configuration And Analysis snap-in has been added to the configuration. Click OK to continue.

3. Within the MMC, right-click Security Configuration And Analysis, and select Open Database. This displays a standard file selection (Open) dialog box. Change to a local directory on your computer, and create a new security database file named **SecurityTest.sdb**. Note the location of this file because you’ll need it in later steps. Click Open.
4. You’ll be prompted to open a Security Template file. By default, these files are stored within the `Security\Templates` directory of your Windows system root. In the Import Template dialog box, select DC Security, and place a check mark in the Clear This Database Before Importing box. Click Open to load the Security Template file.

5. Within the Security Configuration And Analysis utility, you have access to several tasks. To analyze the security configuration of the local computer, right-click the Security Configuration And Analysis utility, and select Analyze Computer Now.
EXERCISE 9.8 (continued)

6. When prompted, enter the path to a local directory with the filename `securityTest.log`. Click OK to begin the analysis process. You will now see the Security Configuration And Analysis utility begin to analyze your computer.

```
Exercising System Security
Analyzing:
 ✓ User Rights Assignment ✓ Active Directory Objects
 ✓ Restricted Groups ✓ System Services
 ✓ Registry ✓ Security Policy
 ✓ File System
```

7. When the process has been completed, you can view the current security settings for the local computer. Navigate through the various items to view the current security configuration.

8. To make changes to this template, expand the Password Policy object under Account Policies. Double-click the Enforce Password History item. In the Enforce Password History Properties dialog box, place a check mark next to the Define This Policy In The Database, and enter 2 for Passwords Remembered.

```
Enforce Password History Properties
Analyzed Security Policy Setting: Environment
Enforce password history

Computer setting:
Keep password history for: 24 passwords remembered

✓ Define this policy in the databases:
Keep password history for:
  2 passwords remembered

This setting affects the database only; it does not change current computer settings.
```

OK Cancel Apply
Understanding the secedit.exe Command

All of the functionality of the Security Configuration And Analysis utility has also been built into a command-line utility called secedit.exe. One advantage of using secedit.exe is that you can perform a batch analysis without having to use the graphical tools.

Just like the Security Configuration And Analysis utility, the command-line utility is database driven, meaning that you can use switches to access database and configuration files. The secedit.exe command performs the following high-level functions: analysis, configuration, export function, and validation. These are the same functions carried out by the Security Configuration And Analysis graphical utility (described in the previous section and exercise).

Table 9.3 lists the secedit.exe switches and their functions.

If any errors occur during the security configuration and analysis process, the results will be stored in the log file that is created. Be sure to examine this file for any errors that might be present in your configuration.
TABLE 9.3 secedit.exe Switches

<table>
<thead>
<tr>
<th>Switch</th>
<th>Valid with Switch</th>
<th>Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>/analyze</td>
<td>Independent function</td>
<td>Analyzes system security.</td>
</tr>
<tr>
<td>/configure</td>
<td>Independent function</td>
<td>Configures system security by applying a stored template.</td>
</tr>
<tr>
<td>/refreshpolicy</td>
<td>Independent function</td>
<td>Reapplies security settings to the GPO.</td>
</tr>
<tr>
<td>/export</td>
<td>Independent function</td>
<td>Exports a template from the database to the template file.</td>
</tr>
<tr>
<td>/validate</td>
<td>Independent function</td>
<td>Validates the syntax of a security template.</td>
</tr>
<tr>
<td>/[DB filename] /analyze, /configure, /export</td>
<td>Required with the /analyze and /configure commands. Optional with others. Specifies the path to the database file.</td>
<td></td>
</tr>
<tr>
<td>/[CFG filename] /analyze, /configure, /export</td>
<td>Required if a new database file is specified. Specifies the path to a security template to import into the database.</td>
<td></td>
</tr>
<tr>
<td>/[log logpath] /analyze, /configure, /export</td>
<td>Specifies the path to the log file generated during the operation.</td>
<td></td>
</tr>
<tr>
<td>/[verbose] /analyze, /configure, /export</td>
<td>Specifies more detailed progress information.</td>
<td></td>
</tr>
<tr>
<td>/[quiet] /analyze, /configure, /export</td>
<td>Suppresses screen output during the operation.</td>
<td></td>
</tr>
<tr>
<td>/[overwrite] /configure</td>
<td>Optional only if /[CFG filename] is used. Completely overwrites the database rather than appending the database.</td>
<td></td>
</tr>
<tr>
<td>/[areas area1 area2] /configure, /export</td>
<td>Specifies security areas to be applied to the system. Default is all areas. Options are SECURITYPOLICY, GROUP_MGMT, USER_RIGHTS, REGKEYS, FILESTORE, and SERVICES.</td>
<td></td>
</tr>
</tbody>
</table>
Chapter 9 • Planning Security for Active Directory

Table 9.3 secedit.exe Switches (continued)

<table>
<thead>
<tr>
<th>Switch</th>
<th>Valid with Switch</th>
<th>Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>Machine_policy</td>
<td>/refreshpolicy</td>
<td>Refreshes security settings for the local computer.</td>
</tr>
<tr>
<td>User_policy</td>
<td>/refreshpolicy</td>
<td>Refreshes security settings for the current local user account.</td>
</tr>
<tr>
<td>/enforce</td>
<td>/refreshpolicy</td>
<td>Refreshes security settings even if no changes have been made to the GPO.</td>
</tr>
<tr>
<td>/MergedPolicy</td>
<td>/export</td>
<td>Merges local and domain policy in the export file.</td>
</tr>
<tr>
<td>Filename</td>
<td>/validate</td>
<td>Indicates the filename of the template to validate.</td>
</tr>
</tbody>
</table>

Real World Scenario

Enforcing Consistent Security Policies

You are one of 50 systems administrators for a large, multinational organization. As is the case for most of these administrators, you’re responsible for all operations related to a portion of an Active Directory domain. Specifically, your job is to manage all of the aspects of administration for objects contained within the Portsmouth OU. The Portsmouth office supports nearly 500 employees. Recently, security has become an important concern because the company is growing quickly and new employees are being added almost daily. In addition, the organization deals with customers’ sensitive financial information, and the success of the business is based on this information remaining secure. You’ve been tasked with creating and implementing an Active Directory security policy for the Portsmouth OU.

At first you start looking into the Group Policy settings that might be appropriate for attaining the desired level of security. You create different levels of security based on users’ job functions. Specific policy options include restricting when users can access network resources and which resources they can access. You also begin to implement settings that “harden” your production servers, especially those that contain sensitive data.
Implementing an Audit Policy

One of the most important aspects of controlling security in networked environments is ensuring that only authorized users are able to access specific resources. Although systems administrators often spend much time managing security permissions, it is almost always possible for a security problem to occur.
Sometimes, the best way to find possible security breaches is to actually record the actions specific users take. Then, in the case of a security breach (the unauthorized shutdown of a server, for example), systems administrators can examine the log to find the cause of the problem.

The Windows Server 2008 operating system and Active Directory offer you the ability to audit a wide range of actions. In the following sections, you’ll see how to implement auditing for Active Directory.

Overview of Auditing

The act of auditing relates to recording specific actions. From a security standpoint, auditing is used to detect any possible misuse of network resources. Although auditing does not necessarily prevent resources from being misused, it does help determine when security violations occurred (or were attempted). Furthermore, just the fact that others know that you have implemented auditing may prevent them from attempting to circumvent security.

You need to complete several steps in order to implement auditing using Windows Server 2008:

- Configure the size and storage settings for the audit logs.
- Enable categories of events to audit.
- Specify which objects and actions should be recorded in the audit log.

Note that there are trade-offs to implementing auditing. First and foremost, recording auditing information can consume system resources. This can decrease overall system performance and use up valuable disk space. Second, auditing many events can make the audit log impractical to view. If too much detail is provided, systems administrators are unlikely to scrutinize all of the recorded events. For these reasons, you should always be sure to find a balance between the level of auditing details provided and the performance-management implications of these settings.

Implementing Auditing

Auditing is not an all-or-none type of process. As is the case with security in general, systems administrators must choose specifically which objects and actions they want to audit.

The main categories for auditing include the following:

- Audit account logon events
- Audit account management
- Audit directory service access
- Audit logon events
- Audit object access
- Audit policy change
- Audit privilege use
- Audit process tracking
- Audit system events

In the above list of categories, there are four of these categories that are related to Active Directory. Let’s discuss these four auditing categories in a bit more detail.
Implementing an Audit Policy

Audit account logon events You enable this auditing event if you want to audit when a user authenticates with a domain controller and log onto the domain. This event is logged in the security log on the domain controller.

Audit account management This auditing event is used when you want to watch what changes are being made to Active Directory accounts. For example, when another administrator creates or deletes a user account, it would be an audited event.

Audit directory service access This auditing event occurs whenever a user or administrator accesses Active Directory objects. Let’s say an administrator opens Active Directory and clicks on a user account, even if nothing is changed on that account, an event is audited.

Audit logon events Account logon events are created for domain account activity. For example, you have a user that logs on to a server so that they can access files; the act of logging onto the server creates this audit event.

In order to audit access to objects stored within Active Directory, you must enable the Audit Directory Service Access option. Then you must specify which objects and actions should be tracked.

Exercise 9.9 walks through the steps you must take to implement auditing of Active Directory objects on domain controllers. In order to complete the steps in this exercise, you must have already completed Exercise 9.1.

Exercise 9.9

Enabling Auditing of Active Directory Objects

1. Open the Local Security Policy tool (located in the Administrative tools program group).

2. Expand Local Policies and then expand Audit Policy.

![Local Security Policy](image-url)
Once you have enabled auditing of Active Directory objects, it’s time to specify exactly which actions and objects should be audited. Exercise 9.10 walks through the steps required to enable auditing for a specific OU. In order to complete the steps in this exercise, you must have already completed Exercise 9.1 and Exercise 9.9.

EXERCISE 9.10

Enabling Auditing for a Specific OU

1. Open the Active Directory Users And Computers tool.
2. To enable auditing for a specific object, right-click the Engineering OU, and select Properties. Select the Group Policy tab on the Engineer Properties dialog box.
3. Highlight the Engineering Security Settings Group Policy object, if present, and select Properties.
4. Select the Security tab on the GPO Properties dialog box, and then click Advanced. Select the Auditing tab. You will see the current auditing settings for this GPO.
Implementing an Audit Policy

Viewing Auditing Information

One of the most important aspects of auditing is regularly monitoring the audit logs. If this step is ignored, as it often is in poorly managed environments, the act of auditing is useless. Fortunately, Windows Server 2008 includes the Event Viewer tool, which allows systems administrators to quickly and easily view audited events. Using the filtering capabilities of Event Viewer, they can find specific events of interest.

Exercise 9.11 walks through the steps you must take to generate some auditing events and to examine the data collected for these actions. In this exercise, you will perform some actions that will be audited, and then you will view the information recorded within the audit logs. In order to complete this exercise, you must have already completed the steps in Exercise 9.1 and Exercise 9.10.

EXERCISE 9.10 (continued)

5. Click the Edit button. Notice that you can view and change auditing settings based on the objects and/or properties. To retain the current settings, click OK. (You may need to create a new GPO. For more information, see Chapter 8.)

6. To exit the configuration for the Engineering object, click OK three more times.

7. When you are finished with the auditing settings, close the Active Directory Users And Computers tool.

EXERCISE 9.11

Generating and Viewing Audit Logs

1. Open the Active Directory Users And Computers tool.

2. Within the Engineering OU, right-click the Bob Engineer User account, and select Properties.

3. On the Bob Properties dialog box, add the middle initial A for this User account, and specify Software Developer in the Description box. Click OK to save the changes.

4. Within the Engineering OU, right-click the Robert Admin User account, and select Properties.

5. On the Robert Properties dialog box add a description of Engineering IT Admin, and click OK.

7. Open the Event Viewer tool from the Administrative Tools program group. Select the Security item under Windows Logs. You will see a list of audited events categorized under Directory Service Access. Note that you can obtain more details about a specific item by double-clicking it.

8. When you are finished viewing the Security Log, close the Event Viewer tool.
Always secure your domain controllers. In production environments, you could wind up very vulnerable to attack by not securing your accounts, which is not what you want. Once you have installed Windows Server 2008, you need to begin the lockdown process. Now more than ever, you need to analyze and address security issues for any default installation of any operating system or platform. With such an emphasis placed on security these days, each install you do needs to be addressed, and it’s no different with Windows Server 2008. After you complete a basic install, you should start a checklist of items that you want to lock down, remove, and audit, or at least know about to keep yourself and your systems safe from threat.

After you install the system, you need to address a few issues pertaining to the installation. First, remember that most of the time, the new system has much in common with the old one as well as many other systems out there. The first common issues for Windows-based systems are the Guest and Administrator accounts. Not only can a hacker try to expose a weakness in this commonality, but also malware-based attacks have been known to use the built-in Administrator account as a potential starting point from which to gain entry to or compromise your system. This is very common these days; many of the virus attacks on most corporate networks have depended on this weakness.

When you keep default accounts in your server, you may be asking for trouble. Any password attack known to IT professionals today is based on the hacker’s knowing two things, the username and the password. If they have half the equation, as they do in the case of credentials (most of the time these are just a password tied to an account), then all they need is a good password cracking tool, a huge dictionary file, and some time.

Another option is to set those accounts up completely so that they function as an early alert system that lets you know someone is picking the lock on your door. If you get an account lockout (if you set it up and find it logged in your Event Viewer) on the default accounts, you can be pretty sure that you are under attack. You can’t avoid this scenario when you leave default accounts in your design. Although you can’t delete many of the default accounts, you will have the option of renaming them.

By default, the Guest account is not operational on either member servers or domain controllers. This is good news because it means that you don’t really have to worry about it being exploited unless someone enables it. However, it is important that you check to make sure that it is not and does not become active.
Summary

In this chapter, we talked about planning for and implementing security with Active Directory. You cannot overlook security; it’s important to always consider how security may affect your deployment or lack of it—how it will ultimately affect your system if it is hacked.

We also looked at the differences between security and distribution groups. Distribution groups are used for only one thing: email distribution lists. These groups are used with email applications (such as Microsoft Exchange Server 2007) to send email to the members of the group you create. They will not allow you to assign permissions, and you cannot use them to filter Group Policy settings. In the Windows Server 2008 operating system, security groups are used to manage user account and computer account access to shared resources and to filter Group Policy settings.

We also explained other important items that pertain to security, such as what default groups are available after a base install of the operating system, and how to secure the most vulnerable accounts.

We then examined how permissions are managed. You can change permissions with Group Policy or simply by altering them right on the object. We also covered how delegation of control can be used to distribute administrative responsibilities. We wrapped up this chapter by discussed auditing—why it’s important and how to get it done.

Thoroughly understanding each of these topics is important when you’re implementing Active Directory in a business environment (and when you’re preparing for the exam). In the next chapter, we focus on Active Directory reliability and how to optimize it.
Exam Essentials

Understand the purpose of security principals. Security principals are Active Directory objects that can be assigned permissions. Understanding how they work is vital to creating a secure Active Directory environment. Security principals include users, groups, and computers.

Understand group types and group scope. The two major types of groups are security and distribution groups, and they have different purposes. Groups can be local, global, or universal. Domain local groups are used to assign permissions to local resources, such as files and printers. The scope of global groups is limited to a single domain. Universal groups can contain users from any domains within an Active Directory forest.

Understand the purpose and permissions of built-in groups. The Active Directory environment includes several built-in local and global groups that are designed to simplify common systems administration tasks. For instance, members of the Administrators group are given full permissions to perform any functions within the Active Directory domain and on the local computer.

Understand how to use Group Policy to manage password and other security-related policies. Through the use of Group Policy settings, you can configure password and account-related options. You can also specify to which users, groups, and OUs many of the settings apply.

Understand how to configure smart card authentication. Smart card authentication requires a CA for issuing smart card certificates. To enroll a smart card certificate, you must first prepare a smart card enrollment station and then write certificate information to the smart cards using a smart card reader. Finally, to make smart cards useful, you should enable the Interactive Logon: Require Smart Card policy in the Group Policy Object Editor.

Understand how to use the Delegation of Control Wizard to allow distributed administration. Delegation is the process by which a higher-level security administrator assigns permissions to other users. The Delegation of Control Wizard walks you through the steps of selecting for which object(s) you want to perform delegation, what permission you want to allow, and which users will have those permissions.

Learn how the Security Configuration And Analysis utility can simplify the implementation of security policies. You can use the Security Configuration And Analysis utility together with security template files to create, modify, and apply security settings in the Registry. Security templates allow systems administrators to define security settings once and then store this information in a file that can be applied to other computers.

Understand the purpose and function of auditing. Auditing helps determine the cause of security violations and helps troubleshoot permissions-related problems.
Review Questions

1. You are the systems administrator for a medium-sized Active Directory domain. Currently, the environment supports many different domain controllers, some of which are running Windows NT 4 and others that are running Windows 2003 and Server 2008. When you are running domain controllers in this type of environment, which of the following types of groups can you not use?
 A. Universal security groups
 B. Global groups
 C. Domain local groups
 D. Computer groups

2. Isabel is a systems administrator for an Active Directory environment that is running in Native mode. Recently, several managers have reported suspicions about user activities and have asked her to increase security in the environment. Specifically, the requirements are as follows:
 - The accessing of certain sensitive files must be logged.
 - Modifications to certain sensitive files must be logged.
 - Systems administrators must be able to provide information about which users accessed sensitive files and when they were accessed.
 - All logon attempts for specific shared machines must be recorded.

Which of the following steps should Isabel take to meet these requirements? (Choose all that apply.)
 A. Enable auditing with the Computer Management tool.
 B. Enable auditing with the Active Directory Users And Computers tool.
 C. Enable auditing with the Active Directory Domains And Trusts tool.
 D. Enable auditing with the Event Viewer tool.
 E. View the audit log using the Event Viewer tool.
 F. View auditing information using the Computer Management tool.
 G. Enable failure and success auditing settings for specific files stored on NTFS volumes.
 H. Enable failure and success auditing settings for logon events on specific computer accounts.

3. A systems administrator wants to allow another user the ability to change user account information for all users within a specific OU. Which of the following tools would allow them to do this most easily?
 A. Domain Security Policy
 B. Domain Controller Security Policy
 C. Computer Management
 D. Delegation of Control Wizard
4. Will, an IT manager, has full permissions over several OUs within a small Active Directory domain. Recently, Will has hired a junior systems administrator named Crystal to take over some of the responsibilities of administering the objects within these OUs. Will gives Crystal access to modify user accounts within two OUs. This process is known as what?

A. Inheritance
B. Transfer of control
C. Delegation
D. Transfer of ownership

5. Paige, a systems administrator, wants to prevent users from starting or stopping a specific service on domain controllers. Which of the following tools can she use to prevent this from occurring?

A. Active Directory Users And Computers tool
B. Domain Controller Security Policy
C. Domain Security Policy
D. Local System Policy

6. As the network administrator of Wanton Accounting Services, you are just getting settled into a comfortable routine. The network was converted from Windows NT and is now deployed as a Windows Server 2008 network with two sites and one domain. Most of the problems that you have encountered have been from users who needed education on how to search the directory and other nuances of the new system. Recently, you were brought into a meeting with top management and you were told that a few employees who recently left the company joined a competitor. Management wanted to know if any attempts were made to obtain information about the company’s accounts. They also wanted to know if anyone internal to the company was trying to access the information improperly. When you informed them that you didn’t know, the experience was not one that you would want to repeat. Because you are the network administrator, you do not have any control over the perimeter security of the network. What can you audit on the network to make sure that you can answer any future inquiries by management with confidence?

A. Logon/logoff—success
B. Logon/logoff—failure
C. File access and object access—success and failure
D. Write access for program files—success and failure
E. User rights—success and failure
7. You are almost finished helping with the migration of a Windows NT network to a Windows Server 2008 network. The current domain functional level is Windows 2000 Mixed mode. There are three locations, and the engineers are creating a single domain for now. Many rumors are surfacing that a merger with one of your competitors is going to happen, and the designers are considering adding a new domain to bring those users into the network. One of your jobs is to help come up with the administrative plans for the designers to manage the users. To outline your task, you are going to build a best-practices approach to giving permissions to resources on your mixed network. Which of the following approaches best suits your situation?

A. Apply permissions to the domain local group and add the accounts to this group.
B. Apply permissions to the domain local groups, add users to global groups, and add the global groups to the domain local groups.
C. Apply permissions to global groups, add users to universal groups, and place these universal groups into global groups.
D. Apply permissions to domain local groups, add the users to global groups, add the global groups into universal groups, and add the universal groups into the domain local groups.

8. Which of the following folders in the Active Directory Users And Computers tool is used when users from outside the forest are granted access to resources within a domain?

A. Users
B. Computers
C. Domain Controllers
D. Foreign Security Principals

9. Alexis is a systems administrator for an Active Directory environment that contains four domains. Recently, several managers have reported suspicions about user activities and have asked him to increase security in the environment. Specifically, the requirements are as follows:

- Audit changes to User objects that are contained within a specific OU.
- Allow a special user account called Audit to view and modify all security-related information about objects in that OU.

Which of the following steps should Alexis take to meet these requirements? (Choose all that apply.)

A. Convert all volumes on which Active Directory information resides to NTFS.
B. Enable auditing with the Active Directory Users And Computers tool.
C. Create a new Active Directory domain and create restrictive permissions for the suspected users within this domain.
D. Reconfigure trust settings using the Active Directory Domains And Trusts tool.
E. Specify auditing options for the OU using the Active Directory Users And Computers tool.
F. Use the Delegation of Control Wizard to grant appropriate permissions to view and modify objects within the OU to the Audit user account.
10. You are installing a new software application on a Windows Server 2008 domain controller. After reading the manual and consulting with a security administrator, you find that you have the following requirements:
 - The software must run under an account that has permissions to all files on the server on which it is installed.
 - The software must be able to bypass filesystem security in order to work properly.
 - The software must be able to read and write sensitive files stored on the local server.
 - Users of the software must not be able to view sensitive data that is stored within the files on the server.

 You decide to create a new User account for the software and then assign the account to a built-in local group. To which of the following groups should you assign the account?
 A. Account Operators
 B. Backup Operators
 C. Guests
 D. Domain Admins

11. Members of which of the following groups have permissions to perform actions in multiple domains?
 A. Domain Admins
 B. Domain Users
 C. Administrators
 D. Enterprise Admins

12. The Association of Firefighters has offices throughout the United States. It has a Windows Server 2008 network that is running in Windows 2000 Mixed domain functional level. The Firefighters’ association has confidential information from several companies that needs to be kept that way. You created a shared folder named Confidential and published it in the directory to contain this confidential information. The manager of the department that manages this information has requested that you disable Alexandria’s access to the share. When checking the properties of the share, you notice that a domain local group called Secret and another domain local group called Temporary have permissions to the Confidential share. You notice that Alexandria is the only member of the Temporary group, so instead of modifying Alexandria’s account directly with a Deny to the share, you simply delete the group. You immediately get a call from the manager that he has changed his mind and that Alexandria needs access to the resources. You re-create the Temporary group and add Alexandria back into the group. The next day you get a call from Alexandria telling you that she cannot access the resources. What is the best way for you to provide her access to the resource?
 A. Add Alexandria to the Secret group.
 B. Grant Alexandria direct access to the share.
 C. Grant access to the Confidential folder for the Temporary group.
 D. Add the Temporary group into the Secret group.
13. Alex, a systems administrator, has created a top-level OU called Engineering. Within the Engineering OU, he has created two OUs: Research and Development. Alex wants to place security permissions on only the Engineering OU, so he blocks the inheritance of properties for the OUs. However, when he does so, he finds that the permissions settings for the child OUs are now unacceptable. Which of the following actions should he take to change the permissions for the child OUs?
A. Open the ACL for each child OU and set permissions for each ACE.
B. Rename the parent OU.
C. Delete and re-create the child OUs.
D. Delete and re-create the parent OU.

14. You are the systems administrator for a small Active Directory domain. Recently, you hired an intern to assist you with managing user objects within the domain. You want to do the following:
- Provide the intern with permissions to access Active Directory using the Active Directory Users And Computers tool.
- Provide the intern with sufficient permissions to change the properties of user accounts and to create and delete user accounts.
- Provide the intern with the ability to create groups and computers.
- Prevent the intern from being able to make any other changes to the Active Directory environment.

To which of the following groups should you add the user?
A. Backup Operators
B. Account Operators
C. Enterprise Admins
D. Domain Admins
E. Guests
15. You want the Security Log to overwrite events that are more than nine days old. Take a look at the following screen. What would you do next in order to accomplish this task?

A. Double-click Maximum Security Log Size.
C. Double-click Retain Security Log.
D. Right-click Retention Method For Security Log.

16. As the network administrator for your company, you need to implement security on your Administrator account. Recently you have detected four attempts to access your server very late at night during business off hours. Which of the following is the best solution to this problem?

A. Delete the Administrator account.
B. Rename the Administrator account.
C. Activate the second Administrator account, the Guest account.
D. Active the second Administrator account, the Backup Operator account.
17. You are asked to implement security into your Active Directory deployment. You need to ensure that you have auditing set up properly. If you wanted to check and see if you had unauthorized access to your server, what would you consider checking?
 A. Event Viewer logs ➔ application log
 B. Event Viewer logs ➔ FRS log
 C. Event Viewer logs ➔ system log
 D. Event Viewer logs ➔ Security Log

18. You have just installed a Windows Server 2008 system into your current network. You are looking at the default accounts that are domain local. Which of the following accounts is not set up by default?
 A. Remote Administrators
 B. Administrators
 C. Backup Operators
 D. Print Operators
 E. Guests
 F. Users

19. The finance department has classified documents that are payroll related. The company wants you to audit the finance documents to make sure that no unauthorized users are accessing the documents. Which of the following needs to be enabled?
 A. Process access
 B. Policy change
 C. Privilege use
 D. Object tracking

20. After monitoring the Event Viewer logs on your Windows Server 2008 systems, you find that a driver fails to load during startup. If the event is recorded, what log would you examine to find the entry?
 A. Event log
 B. Application log
 C. System log
 D. Security log
Answers to Review Questions

2. B, E, G, H. The Active Directory Users And Computers tool allows systems administrators to change auditing options and to choose which actions are audited. At the filesystem level, Isabel can specify exactly which actions are recorded in the audit log. She can then use Event Viewer to view the recorded information and provide it to the appropriate managers.

3. D. The Delegation of Control Wizard is designed to assist systems administrators in granting specific permissions to other users.

4. C. Delegation is the process of granting permissions to other users. Delegation is often used to distribute systems administration responsibilities. Inheritance is the transfer of permissions and other settings from parent OUs to child OUs. Transfer of control and transfer of ownership are not terms applicable to OUs.

5. B. The settings made in the Domain Controller Security Policy tool apply only to domain controllers.

6. C. By auditing for the success or failure of file access and object access you can learn who is accessing any files that you want to watch. You can then create a report and notify management of who has accessed the files and who has tried and failed to access those files. However, because outsiders may be collusion with someone inside the company, the success or failure of logon/logoff will not provide clear results in this situation. User rights refer to the process of changing the authority of a user to system privileges and are not related to this problem. Auditing access for program files is usually associated with determining whether a virus is attempting to embed itself into your program files.

7. B. Because this is still a Windows 2000 Mixed domain functional-level network, universal groups are not available, so the best practice is to add users to global groups and apply permissions to the domain local groups where the resources reside. Even in a Native mode network, you do not want to place users into a universal group because the contents of universal groups are included in the Global Catalog and therefore will unnecessarily add to its size. When the migration is complete, you can use the universal groups to include global groups from multiple domains and then you can placed them in domain local groups that have permissions applied to them.

8. D. When resources are made available to users who reside in domains outside the forest, Foreign Security Principal objects are automatically created. These new objects are stored within the ForeignSecurityPrincipals folder.

9. B, E, F. The first step is to enable auditing. With auditing enabled, Lance can specify which actions are recorded. To give permissions to the Audit user account, he can use the Delegation of Control Wizard.

10. B. Members of the Backup Operators group are able to bypass filesystem security in order to back up and restore files. The requirements provided are similar to those for many popular backup software applications.
11. D. Members of the Enterprise Admins group are given full permissions to manage all domains within an Active Directory forest.

12. C. Once you delete a security principal such as a local domain group, it is lost forever, and any new one, even with the same name, needs to have the permissions reapplied to become effective. You could add Alexandria to the Secret group, but you don’t know what other resources she would get access to by becoming a member of this group. Giving Alexandria direct access to the share would work, but it is not the best practice. You should always use groups to apply resources in order to maintain manageability of the network. Because the network is in Windows 2000 Mixed domain functional level, you cannot nest groups other than by adding a global group into a domain local group.

13. A. When Alex blocked inheritance, the child OUs did not retain the permissions of the parent OU. Therefore, he must use the ACL for each child and set specific permissions for each ACE in the list.

14. B. The user should be added to the Account Operators group. Although membership in the Enterprise Admins or Domain Admins group provides the user with the requisite permissions, these choices exceed the required functionality.

15. C. The Retain Security Log setting allows you to specify how long the Security Log should be retained before it gets overwritten.

16. B. When installing and using Windows Server 2008, always make sure you keep tabs on the use of the Administrator account. Often, this account can be manipulated and used for wrongdoing. You should rename the Administrator account if you have a problem with it or want to protect it because most hackers can easily find out half the credentials they need to get into the heart of your system.

17. D. The Event Viewer is used to view logs. The Security Log records events such as valid and invalid logon attempts, as well as events related to resource use, such as the creating, opening, or deleting of files. For example, when logon auditing is enabled, an event is recorded in the Security Log each time a user attempts to log on to the computer. You must be logged on as Administrator or as a member of the Administrators group in order to turn on, use, and specify which events are recorded in the Security Log.

18. A. All domain local groups are correct except for Remote Administrators; this is not a default group created with the base OS install.

19. D. To audit documents (objects) you need to enable auditing on object access. You can audit successes or failures.

20. C. The Event Viewer is used to view logs. The system log contains events logged by Windows system components. For example, if a driver fails to load during startup, an event is recorded in the system log. Windows predetermines the events that are logged by system components.
Chapter 10

Active Directory Optimization and Reliability

MICROSOFT EXAM OBJECTIVES COVERED IN THIS CHAPTER:

✓ Maintaining the Active Directory Environment
 ▪ Configure backup and recovery. May include but is not limited to: using Windows Server Backup; back up files and system state data to media; back up and restore by using removable media; perform an authoritative or non-authoritative Active Directory restore; Directory Services Recovery Mode (DSRM) (reset admin password); back up and restore GPOs
 ▪ Perform offline maintenance. May include but is not limited to: offline defragmentation and compaction; Restartable Active Directory; Active Directory database storage allocation
 ▪ Monitor Active Directory. May include but is not limited to: Network Monitor; Task Manager; Event Viewer; ReplMon; RepAdmin; Windows System Resource Manager; Reliability and Performance Monitor; Server Performance Advisor
One of the most important tasks of an IT team is to keep the network up and running. Making sure that Active Directory is running at its peak performance is one way you can guarantee that your end users continue to use the network and its resources without problems or interruptions. Remember, everyone has clients; sales people have theirs as do we as system administrators. Our clients are the end users. It’s our job to make sure our clients can do their jobs.

When you are working with Active Directory it is important that you make sure your system information is safely backed up. Backups become useful when you lose data because of system failures, file corruptions, or accidental modifications of information. As consultants, we can tell you from experience that backups are one of the most important tasks that an IT person performs daily. In this chapter, we cover the many different types of backup strategies.

Sometimes, performance optimization can feel like a luxury, especially if you can’t get your domain controllers to the point where they are actually performing the services you intended for them, such as servicing printers or allowing users to share and work on files. The Windows Server 2008 operating system platform has been specifically designed to provide high availability services intended solely to keep your mission-critical applications and data accessible even in times of disaster. Occasionally, however, you might experience intermittent server crashes on one or more of the domain controllers or other computers in your environment.

The most common cause of such problems is a hardware configuration issue. Poorly written device drivers and unsupported hardware can cause problems with system stability. Similarly, a failed hardware component (such as system memory) can also cause problems. For instance, memory chips can be faulty, electrostatic discharge (ESD) can ruin them, and other hardware issues can occur. No matter what, a problem with your memory chip only spells disaster for your server. Usually, third-party hardware vendors provide utility disks with their computers that you can use to perform hardware diagnostics on machines to help find your problems. These utilities are a good first step when you are working on resolving intermittent server crashes. When you use these utility disks combined with the troubleshooting tips we provide in this and other chapters of this book, you should be able to pinpoint most Active Directory-related problems that might occur on your network.

In this chapter, we’ll cover tools and methods for measuring performance and troubleshooting failures in Windows Server 2008. Before you dive into the technical details, however, you should thoroughly understand what we’re trying to accomplish and how we’ll meet this goal.
It would be almost impossible to cover everything that could go wrong with your Windows Server 2008 system and/or Active Directory. This book covers many of the most likely and/or common issues you might come across, but anything is likely. Make sure you focus on the methodology we use and the steps we show you to locate and isolate a problem, even if you are not 100 percent sure what the problem may be. In addition, use online resources to help you locate and troubleshoot the problem, but don’t believe everything you read (something that is posted online can be wrong or misleading); test your changes in a lab environment and try to read multiple sources. Always use Microsoft Support (http://support.microsoft.com/) as one of your sources, because this site is most likely the right source of information (it’s the product vendor, after all). You won’t be able to find and fix everything, but knowing where to find critical information that will aid you definitely won’t hurt you either. One of the tools that many of us use in the industry is Microsoft TechNet. The full version of TechNet (paid subscription) is a resource that will help you find and fix many real world issues.

Overview of Windows Server 2008 Performance Monitoring

The first step in any performance optimization strategy is to accurately and consistently measure performance. The insight that you’ll gain from monitoring factors such as network and system utilization, will be extremely useful when you go to measure the effects of any changes.

The overall process of performance monitoring usually involves the following steps:

1. Establish a baseline of current performance.
2. Identify the bottleneck(s).
3. Plan for and implement changes.
4. Measure the effects of the changes.
5. Repeat the process, based on business needs.

Note that the performance optimization process is never really finished because you can always try to gain more performance from your system by modifying settings and applying other well-known tweaks. Before you get discouraged, realize that you’ll reach some level of performance that you and your network and system users consider acceptable enough; at this point, you will find that it’s not worth the additional effort it’ll take to optimize performance further. Also note that as your network and system load increases (more users or users doing more), as will the need to reiterate this process. By continuing to monitor, measure, and optimize, you will keep ahead of the pack and keep your end users happy.
Now that you have an idea of the overall process, let’s focus on how you should make changes. Some important ideas to keep in mind when monitoring performance include the following:

Plan changes carefully. Here’s a rule of thumb we always try to follow: An hour of planning can save you a week of work. When you are working in an easy-to-use GUI-based operating system like the Windows Server 2008 platform, it’s tempting to randomly remove a check mark here or there and then retest the performance. You should resist the urge to do this because some changes can cause large decreases in performance or can impact functionality. Before you make haphazard changes (especially on production servers), take the time to learn about, plan for, and test your changes. Plan for outages and testing accordingly.

Utilize a test environment. Test in a test lab that simulates a production environment. Do not make changes on production environments without first giving warning. Ideally, change production environments in off hours when fewer network and system users will be affected. Making haphazard changes in a production environment can cause serious problems. These problems will likely outweigh any benefits you could receive from making performance tweaks.

Make only one change at a time. The golden rule of scientific experiments is that you should always keep track of as many variables as possible. When the topic is server optimization, this roughly translates into making only one change at a time.

One of the problems with making multiple system changes is that, although you may have improved performance overall, it’s hard to determine exactly which change created the positive effects. It’s also possible, for example, that changing one parameter increased performance greatly while changing another decreased it slightly. Although the overall result was an increase in performance, the second, performance-reducing option should be identified so the same mistake is not made again. To reduce the chance of obtaining misleading results, always try to make only one change at a time.

But the main reason to make one change at a time is that if you do make a mistake or create an unexpected issue, you can easily back out of the change. If you make two or three changes at the same time and are not sure which one created the problem, you will have to undo all the changes and then make one alteration at a time to find the problem. If you make only one change at a time and follow that methodology every time, you won’t find yourself in this situation.

It’s important to remember that many changes (for example, Registry changes) take place immediately; they do not need to be explicitly applied. Once the change is made, it’s live. Be careful to plan your changes wisely.

Ensure consistency in measurements. When you are monitoring performance, consistency is extremely important. You should strive toward having repeatable and accurate measurements. Controlling variables, such as system load at various times during the day, can help.
Assume, for instance, that you want to measure the number of transactions that you can simulate on the accounting database server within an hour. The results would be widely different if you ran the test during the month-end accounting close than if you ran the test on a Sunday morning. By running the same tests when the server is under a relatively static amount of load, you will be able to get more accurate measurements.

Maintain a performance history. In the introduction to this chapter, we mentioned that the performance optimization cycle is a continuous improvement process. Because many changes may be made over time, it is important to keep track of the changes you have made and the results you have experienced. Documenting this knowledge will help solve similar problems if they arise. We understand that many IT professionals do not like to document, but documentation can make life much easier in the long run.

As you can see, you need to keep a lot of factors in mind when optimizing performance. Although this might seem like a lot to digest and remember, do not fear; as systems administrators, you will learn some of the rules you need to know to keep your system running optimally. Fortunately, the tools included with Windows Server 2008 can help you organize the process and take measurements. Now that you have a good overview of the process, let’s move on to look at the tools you can use to set it in motion.

Using Windows Server 2008 Performance Tools

Because performance monitoring and optimization are vital functions in network environments of any size, Windows Server 2008 includes several performance-related tools.

The first and most useful tool is the Windows Server 2008 **Reliability and Performance Monitor**, which was designed to allow users and systems administrators to monitor performance statistics for various operating system parameters. Specifically, you can collect, store, and analyze information about CPU, memory, disk, and network resources using this tool, and these are only a handful of the things that you can monitor. By collecting and analyzing performance values, systems administrators can identify many potential problems. As you’ll see later in this chapter, you can also use the Reliability and Performance Monitor to monitor the performance of Active Directory and its various components.

Here are the two ways in which you can use the Reliability and Performance Monitor:

Reliability and Performance Monitor ActiveX Control The Windows Server 2008 Reliability and Performance Monitor is an ActiveX control that you can place within other applications. Examples of applications that can host the Reliability and Performance Monitor control include web browsers and client programs like Microsoft Office’s Word XP or Excel XP. This functionality can make it very easy for applications developers and systems administrators to incorporate the Reliability and Performance Monitor into their own tools and applications.
Reliability and Performance MMC For more common performance monitoring functions, you'll want to use the built-in Microsoft Management Console (MMC) version of the Reliability and Performance Monitor called the Performance Monitor.

To access the Reliability and Performance Monitor MMC, you open Computer Management in the Administrative Tools program group within your Start menu. This launches the Reliability and Performance MMC and loads and initializes Reliability and Performance Monitor with a handful of default counters.

You can choose from many different methods of monitoring performance when you are using Performance Monitor. A couple of examples are listed here:

- You can look at a snapshot of current activity for a few of the most important counters; this allows you to find areas of potential bottlenecks and monitor the load on your servers at a certain point in time.

- You can save information to a log file for historical reporting and later analysis. This type of information is useful, for example, if you want to compare the load on your servers from three months ago to the current load.

You’ll get to take a closer look at this method and many others as you examine Performance Monitor in more detail.

In the following sections, you’ll learn about the basics of working with the Windows Server 2008 Performance Monitor and other performance tools. Then, you’ll apply these tools and techniques when you monitor the performance of Active Directory.

Your Performance Monitor grows as your system grows, and whenever you add services to Windows Server 2008 (such as installing Exchange Server 2007 SP1), you also add to what you can monitor. You should make sure that, as you install services, you take a look at what it is you can monitor.

Deciding What to Monitor

The first step in monitoring performance is to decide what you want to monitor. In Windows Server 2008, the operating system and related services include hundreds of performance statistics that you can track easily. All of these performance statistics fall into three main categories that you can choose to measure:

Performance objects A performance object within Performance Monitor is a collection of various performance statistics that you can monitor. Performance objects are based on various areas of system resources. For example, there are performance objects for the processor and memory, as well as for specific services such as web services. Later in this chapter, you’ll see how you can use the Windows NT Directory Service (NTDS) performance object to monitor performance of Active Directory.
Counters Counters are the actual parameters measured by Performance Monitor. They are specific items that are grouped within performance objects. For example, within the Processor performance object, there is a counter for % Processor Time. This counter displays one type of detailed information about the Processor performance object (specifically, the amount of total CPU time all of the processes on the system are using).

Instances Some counters will have instances. An instance further identifies which performance parameter the counter is measuring. A simple example is a server with two CPUs. If you decide that you want to monitor processor usage (using the Processor performance object)—specifically, utilization (the %Total Utilization counter)—you must still specify which CPU(s) you want to measure. In this example, you would choose between monitoring either of the two CPUs or a total value for both (using the Total instance).

To specify which performance objects, counters, and instances you want to monitor, add them to Performance Monitor using the Add Counters dialog box. Figure 10.1 shows the various available options when you add new counters to monitor using Performance Monitor.

FIGURE 10.1 Adding a new Performance Monitor counter

The items that you will be able to monitor will be based on your hardware and software configuration. For example, if you have not installed and configured the Internet Information Server (IIS) service, the options available within the Web Server performance object will not be available. Or, if you have multiple network adapters or CPUs in the server, you will have the option of viewing each instance separately or as part of the total value. You’ll see which counters are generally most useful later in this chapter.
Viewing Performance Information

The Windows Server 2008 Performance Monitor was designed to show information in a clear and easy-to-understand format. Performance objects, counters, and instances may be displayed in each of three views. This flexibility allows systems administrators to quickly and easily define the information they want to see once and then choose how it will be displayed based on specific needs. Most likely you will only use one view, but it’s helpful to know what other views are available depending on what it is you are trying to assess.

You can use the following main views to review statistics and information on performance:

Graph view The Graph view is the default display that is presented when you first access the Windows Server 2008 Performance Monitor. The chart displays values using the vertical axis and time using the horizontal axis. This view is useful if you want to display values over a period of time and or see the changes in these values over that time period. Each point that is plotted on the graph is based on an average value calculated during the sample interval for the measurement being made. For example, you may notice overall CPU utilization starting at a low value at the beginning of the chart and then becoming much higher during later measurements. This indicates that the server has become busier (specifically, with CPU-intensive processes). Figure 10.2 provides an example of the Graph view.

FIGURE 10.2 Viewing information in Performance Monitor Graph view
A quick way to get to the Performance Console and view Performance Monitor is to go to Start > Run and enter `perfmon` in the Open box. The Performance Console opens directly to Performance Monitor.

Histogram view The Histogram view shows performance statistics and information using a set of relative bar charts. This view is useful if you want to see a snapshot of the latest value for a given counter. For example, if we were interested in viewing a snapshot of current system performance statistics during each refresh interval, the length of each of the bars in the display would give us a visual representation of each value. It would also allow us to visually compare measurements relative to each other. You can set the histogram to display an average measurement as well as minimum and maximum thresholds. Figure 10.3 shows a typical Histogram view.

Figure 10.3 Viewing information in Performance Monitor Histogram view

Report view Like the Histogram view, the Report view shows performance statistics based on the latest measurement. You can see an average measurement as well as minimum and maximum thresholds. This view is most useful for determining exact values because it provides information in numeric terms, whereas the Chart and Histogram views provide information graphically. Figure 10.4 provides an example of the type of information you’ll see in the Report view.
Managing Performance Monitor Properties

You can specify additional settings for viewing performance information within the properties of Performance Monitor. You can access these options by clicking the Properties button in the taskbar or by right-clicking Performance Monitor display and selecting Properties. You can change these additional settings using the following tabs:

General tab On the General tab (shown in Figure 10.5), you can specify several options that relate to Performance Monitor view.

- You can enable or disable legends (which display information about the various counters), the value bar, and the toolbar.
- For the Report and Histogram views, you can choose which type of information is displayed. The options are Default, Current, Minimum, Maximum, and Average. What you see with each of these options depends on the type of data being collected. These options are not available for the Graph view, because the Graph view displays an average value over a period of time (the sample interval).
- You can also choose the graph elements. By default, the display will be set to update every second. If you want to update less often, you should increase the number of seconds between updates.
Source tab On the Source tab (shown in Figure 10.6), you can specify the source for the performance information you would like to view. Options include current activity (the default setting) or data from a log file. If you choose to analyze information from a log file, you can also specify the time range for which you want to view statistics. We’ll cover these selections in the next section.

FIGURE 10.6 Source tab of Performance Monitor Properties dialog box
Data tab The Data tab (shown in Figure 10.7) displays a list of the counters that have been added to Performance Monitor display. These counters apply to the Chart, Histogram, and Report views. Using this interface, you can also add or remove any of the counters and change properties, such as the width, style, and color of the line, and the scale used for display.

FIGURE 10.7 The Data tab of Performance Monitor Properties dialog box

Graph tab On the Graph tab (shown in Figure 10.8), you can specify certain options that will allow you to customize the display of Performance Monitor views. First you can specify what type of view you want to see (Line, Histogram Bar, or Report). Then you can add a title for the graph, specify a label for the vertical axis, choose to display grids, and specify the vertical scale range.

FIGURE 10.8 The Graph tab of Performance Monitor Properties dialog box
Appearance tab Using the Appearance tab (see Figure 10.9), you can specify the colors for the areas of the display, such as the background and foreground. You can also specify the fonts that are used to display counter values in Performance Monitor views. You can change settings to find a suitable balance between readability and the amount of information shown on one screen. Finally, you can set up the properties for a border.

Figure 10.9 The Appearance tab of Performance Monitor Properties dialog box

Now that you have an idea of the types of information Performance Monitor tracks and how this data is displayed, take a look at another feature that you will use to save and analyze performance data.

Saving and Analyzing Data with Performance Logs and Alerts

One of the most important aspects of monitoring performance is that it should be done over a given period of time (referred to as a baseline). So far, we have discussed how you can use Performance Monitor to view statistics in real time. We have, however, also alluded to using Performance Monitor to save data for later analysis. Now let’s take a look at how this is done.

When viewing information in Performance Monitor, you have two main options with respect to the data on display:

View Current Activity When you first open the Performance icon from the Administrative Tools folder, the default option is to view data obtained from current system information. This method of viewing measures and displays various real-time statistics on the system’s performance.
View Log File Data This option allows you to view information that was previously saved to a log file. Although the performance objects, counters, and instances may appear to be the same as those you saw using the View Current Activity option, the information itself was actually captured at a previous point in time and stored into a log file.

Log files for the View Log File Data option are created in the Performance Logs and Alerts section of the Windows Server 2008 Performance tool.

Three items allow you to customize how the data is collected in the log files:

Counter logs Counter logs record performance statistics based on the various performance objects, counters, and instances available in Performance Monitor. The values are updated based on a time interval setting and are saved to a file for later analysis.

Circular logging In circular logging, the data that is stored within a file is overwritten as new data is entered into the log. This is a useful method of logging if you only want to record information for a certain time frame (for example, the last four hours). Circular logging also conserves disk space by ensuring that the performance log file will not continue to grow over certain limits.

Linear logging In linear logging, data is never deleted from the log files, and new information is added to the end of the log file. The result is a log file that continually grows. The benefit is that all historical information is retained.

Now that we have an idea of the types of functions that are supported by the Windows Server 2008 Performance tool, let’s move on to look at how this information can be applied to the task at hand—monitoring and troubleshooting Active Directory.

Real World Scenario

Real World Performance Monitoring

In our daily jobs as systems engineers and administrators, we come across systems that need of our help...and may even be asking for it. Of course you check your Event Viewer, Performance Monitor, and perform other tasks that help you troubleshoot. But what is really the most common problem that occurs? From our experience, we’d say that many times you suffer performance problems if you have your Windows Server 2008 operating system installed on a sub-par system. Either the server hardware isn’t enterprise class, or the minimum hardware requirements weren’t addressed. Most production servers suffer from slow response times, lagging, and so on, because money wasn’t spent where it should have been—on the server’s hardware requirements.

Take a look at www.microsoft.com/windowsserver2008/evaluation/overview.mspx to see the minimum Windows Server 2008 requirements. You have to make very sure that you follow these minimum requirements. That’s not all though; as you will see by reading this chapter, most times the minimum requirements are just that—the bare minimum and not necessarily good enough, especially if you are running many services on your server or you have many network clients who will access the server.
Monitoring and Troubleshooting Active Directory Components

Active Directory utilizes many different types of server resources in order to function properly. For example, it uses memory to increase the speed of accessing data, CPU time to process information, and network resources to communicate with clients and Active Directory domain controllers. Additionally, it uses disk space for storing the Active Directory data store itself and the Global Catalog (GC).

The types and amount of system resources consumed by Active Directory are based on many factors. Some of the more obvious ones include the size of the Active Directory data store and how many users are supported in the environment. Other factors include the replication topology and the domain architecture. As you can see, all of the design issues you learned about in earlier chapters will play a role in the overall performance of domain controllers and Active Directory.

So how do all of these Active Directory requirements impact the server overall? Although the answer isn’t always simple to determine, Performance Monitor is usually the right tool for the job. In the following sections, we’ll look at how you can use Windows Server 2008’s Performance tool to monitor and optimize the performance of Active Directory.
Monitoring Domain Controller Performance

When it comes to performance, domain controllers have the same basic resource requirements as the other machines in your environment. The major areas to monitor for computers include the following:

- Processor (CPU) time
- Memory
- Disk I/O (Input/Output)
- Disk space
- Network utilization

When you’re deciding to monitor performance, you should carefully determine which statistics will be most useful. For example, if you’re measuring the performance of a database server, CPU time and memory may be the most important. However, some applications may have high disk I/O and network requirements. Choosing what to monitor can be difficult because so many different options are available. Many times it just takes experience and trial and error using various performance objects to learn exactly how best to monitor things. This chapter at least starts you on your journey if performance monitoring is new to you, and it fills you in on how to monitor Active Directory if you are already a performance-monitoring guru.

Table 10.1 describes some common System Monitor counters and performance objects you might want to choose.

<table>
<thead>
<tr>
<th>Performance Object</th>
<th>Counter</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Memory</td>
<td>Available MB</td>
<td>Displays the number of megabytes of physical memory (RAM) available for use by processes.</td>
</tr>
<tr>
<td>Memory</td>
<td>Pages/Sec</td>
<td>Indicates the number of pages of memory that must be read from or written to disk per second. A high number may indicate that more memory is needed.</td>
</tr>
<tr>
<td>Network Interface</td>
<td>Bytes Total/Sec</td>
<td>Measures the total number of bytes sent to or received by the specified network interface card.</td>
</tr>
<tr>
<td>Network Interface</td>
<td>Packets Received Errors</td>
<td>Specifies the number of received network packets that contained errors. A high number may indicate problems with the network connection.</td>
</tr>
</tbody>
</table>
TABLE 10.1 Useful Counters for Monitoring Domain Controller Performance (continued)

<table>
<thead>
<tr>
<th>Performance Object</th>
<th>Counter</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Network Segment</td>
<td>% Net Utilization</td>
<td>Specifies the percentage of total network resources being consumed. A high value may indicate network congestion.*</td>
</tr>
<tr>
<td>Paging File</td>
<td>% Usage</td>
<td>Indicates the amount of the Windows virtual memory file (paging file) in use. If this is a large number, the machine may benefit from a RAM upgrade.</td>
</tr>
<tr>
<td>Physical Disk</td>
<td>Disk Reads/Sec Disk Writes/Sec</td>
<td>Indicates the amount of disk activity on the server.</td>
</tr>
<tr>
<td>Physical Disk</td>
<td>Avg. Disk Queue Length</td>
<td>Indicates the number of disk read or write requests that are waiting to access the disk. If this value is high, disk I/O could potentially be a bottleneck.</td>
</tr>
<tr>
<td>Processor</td>
<td>% Processor Time</td>
<td>Indicates the overall CPU load on the server. High values generally indicate processor-intensive tasks. In machines with multiple processors, you can monitor each processor individually, or you can view a total value.</td>
</tr>
<tr>
<td>Server</td>
<td>Bytes Total/Sec</td>
<td>Specifies the number of bytes sent by the Server service on the local machine. A high value usually indicates that the server is responsible for fulfilling many outbound data requests (such as a file/print server).</td>
</tr>
<tr>
<td>Server</td>
<td>Server Sessions</td>
<td>Indicates the number of users who may be accessing the server.</td>
</tr>
<tr>
<td>System</td>
<td>Processor Queue Length</td>
<td>Specifies the number of threads that are awaiting CPU time. A high number might indicate that a reduction in available CPU resources is creating a potential bottleneck.</td>
</tr>
</tbody>
</table>
Keep in mind that this is not by any means a complete list of the items of interest—it’s just a good guideline for some of the more common items that you may want to include. The key to determining what to monitor is to first understand the demands imposed by applications or services and then make appropriate choices. When monitored and interpreted properly, these performance values can be extremely useful in providing insight into overall system performance.

Monitoring Active Directory Performance with Performance Monitor

As you may have already guessed, the Windows Server 2008 operating system automatically tracks many performance statistics that are related to Active Directory. You can easily access these same statistics by using Performance Monitor. The specific counters you’ll want to monitor are part of the NTDS performance object and are based on several different functions of Active Directory, including some of those that follow:

- The Address Book (AB)
- The Directory Replication Agent (DRA)
- The Directory Service (DS)
- The Lightweight Directory Access Protocol (LDAP)
- The Security Accounts Manager (SAM)

You may find each of these performance objects useful when you are monitoring specific aspects of Active Directory. The specific counters you choose to monitor will depend on the aspects of Active Directory performance you’re planning to examine. For example, if you want to measure performance statistics related to Active Directory replication (covered in Chapter 5, “Configuring Sites and Replication”), you will probably want to monitor the DRA counters. Similarly, if you’re interested in performance loads generated by Windows NT computers, you will want to monitor the SAM.

Perhaps the best way to learn about the various types of performance objects, counters, and instances that are related to Active Directory is by actually measuring these values and saving them for analysis. Exercise 10.1 walks you through the steps of working with various features.

EXERCISE 10.1

Monitoring Domain Controller and Active Directory Performance with Windows Server 2008 Performance Monitor

1. Open the Reliability and Performance Monitor by selecting Start ➤ Run and entering `perfmon`.

2. In the left pane, right-click Performance Monitor and select New ➤ Data Collector Set. In the Name box of the Create New Data Collector Set dialog box, type **Domain Controller Performance** and click Next.

3. A dialog box showing the location of the saved data appears. This is the location on the hard disk where the data will be stored. Keep the defaults and click Next.

4. In the Create New Data Collector Set dialog box, make sure the Save And Close radio button is selected and click Finish.
5. In the left pane of the Reliability and Performance Monitor, expand Data Collector Sets, User Defined and click the new collector set you just created (Domain Controller Performance). Right-click System Monitor Log in the right pane and choose Properties.

6. In the System Monitor Log Properties dialog box, click the Add button.
7. In the dialog box that appears, select <Local Computer> in the Select Counters From Computer drop-down list. Expand the Processor object from the Available Counters list. Select the % Processor Time counter and the _Total instance. Note that you can click the Show Description box to find more information about the various parameters that are available. Click the Add button to add the counter to the Added Counters list.

8. When you are finished adding these counters, click the OK button to return to the System Monitor Log Properties dialog box and view the counters that you selected.
9. Click the File tab of the System Monitor Log Properties dialog box. Change the log file name to Domain Controller log. Click the Append check box. Click OK.

10. In the left pane of the Reliability and Performance Monitor, right-click the collector set Domain Controller Performance. Choose Start.

11. Let the system run for five minutes. During this time, open applications or windows on the server. After five minutes, in the left pane of the Reliability and Performance Monitor, right-click the collector set Domain Controller Performance. Choose Stop.
EXERCISE 10.1 (continued)

13. View the data that was captured.

14. When you are done viewing the captured data, close the Reliability and Performance Monitor.
Chapter 10 • Active Directory Optimization and Reliability

It is useful to have a set of performance monitor counters saved to files so that you can quickly and easily monitor the items of interest. For example, you may want to create a System Monitor log that includes statistics related to database services while another focuses on network utilization. In that way, whenever a performance problem occurs, you can quickly determine the cause of the problem (without having to create a System Monitor log from scratch).

Using Other Performance Monitoring Tools

Performance Monitor allows you to monitor various different parameters of the Windows Server 2008 operating system and associated services and applications. However, you can use three other tools to monitor performance in Windows Server 2008. They are Network Monitor, Task Manager, and Event Viewer. All three of these tools are useful for monitoring different areas of overall system performance and for examining details related to specific system events. In the following sections, we’ll take a quick look at these tools and how you can best use them.

The Network Monitor

Although Performance Monitor is a great tool for viewing overall network performance statistics, it isn’t equipped for packet-level analysis and doesn’t give you much insight into what types of network traffic are traveling on the wire. That’s where the Network Monitor tool comes in. There are two main components to the Network Monitor: the Network Monitor Agent and the Network Monitor tool itself.

The Network Monitor Agent is available with Windows 2000, XP, Server 2003, and Server 2008. The agent allows you to track network packets. When you install the Network Monitor Agent, you will also be able to access the Network Segment System Monitor counter.

On Windows Server 2008 computers, you’ll see the Network Monitor icon appear in the Administrative Tools program group. You can use the Network Monitor tool to capture data as it travels on your network.

A limited version of Network Monitor is available for free with Windows Server 2008. The full version of Network Monitor is available at Microsoft’s download server. For more information, see www.microsoft.com/downloads/.

Once you have captured the data of interest, you can save it to a capture file or further analyze it using the Network Monitor. Experienced network and systems administrators can use this information to determine how applications are communicating and the types of data that are being passed via the network.

For the exam, you don’t need to understand the detailed information that Network Monitor displays, but you should be aware of the types of information that you can view and when you should use Network Monitor.
The Task Manager

Performance Monitor is designed to allow you to keep track of specific aspects of system performance over time. But what do you do if you want to get a quick snapshot of what the local system is doing? Creating a System Monitor chart, adding counters, and choosing a view is overkill. Fortunately, the Windows Server 2008 Task Manager has been designed to provide a quick overview of important system performance statistics without requiring any configuration. Better yet, it’s always readily available.

You can easily access the Task Manager in several ways:

- Right-click the Windows taskbar, and then click Task Manager.
- Press Ctrl+Alt+Del, and then select Task Manager.
- Press Ctrl+Shift+Esc.

Each of these methods allows you to quickly access a snapshot of the current system performance.

Once you access the Task Manager, you will see the following six tabs:

Applications tab The Applications tab (see Figure 10.10) shows you a list of the applications currently running on the local computer. This is a good place to check to determine which programs are running on the system. You can also use this tab to shut down any applications whose status is listed as [Not Responding] (meaning either that the application has crashed or that it is performing operations and is not responding to Windows Server 2008).

![Figure 10.10 The Applications tab of the Task Manager](image)

Processes tab The Processes tab shows you all of the processes that are currently running on the local computer. By default, you’ll be able to view how much CPU time and memory a
particular process is using. By clicking any of the columns, you can quickly sort by the data values in that particular column. This is useful, for example, if you want to find out which processes are using the most memory on your server.

By accessing the performance objects in the View menu, you can add additional columns to the Processes tab. Figure 10.11 shows a list of the current processes running on a Windows Server 2008 computer.

FIGURE 10.11 Viewing process statistics and information using the Task Manager

![Task Manager Processes](image)

The Services tab (see Figure 10.12) shows you what services are currently running on the system. From this location, you can stop a service from running by right-clicking the service and choosing Stop. The Services button launches the Services MMC.

FIGURE 10.12 Viewing services information using the Task Manager

![Task Manager Services](image)
Performance tab One of the problems with using Performance Monitor to get a quick snapshot of system performance is that you have to add counters to a chart. Most systems administrators are too busy to take the time to do this when all they need is basic CPU and memory information. That’s where the Performance tab of the Task Manager comes in. Using the Performance tab, you can view details about how memory is allocated on the computer and how much of the CPU is utilized (see Figure 10.13).

FIGURE 10.13 Viewing CPU and memory performance information using the Task Manager

Networking tab Like the Performance tab, the Networking tab (see Figure 10.14) displays a graph of the current network utilization. The active connections are displayed at the bottom of the tab along with their connection speed, percentage of utilization, and status. The graph in the top part of the tab displays the percentage of utilization in real time.

FIGURE 10.14 Viewing network information using the Task Manager
Users tab The Users tab (see Figure 10.15) displays a list of the currently active user accounts. This is particularly helpful if you want to see who is online and quickly log off or disconnect users. You can also send a console message to any remote user in the list by clicking the Send Message button. (The button is grayed out in Figure 10.15 because you cannot send a message to yourself. If you select a different user, the button will be available.)

FIGURE 10.15 Viewing user information using the Task Manager

As you can see, the Task Manager is very useful for quickly providing important information about the system. Once you get used to using the Task Manager, you won’t be able to get by without it!

Make sure you use Task Manager often and familiarize yourself with all that it can do; you can end processes that have become intermittent, kill applications that may hang the system, view NIC performance, and so on. In addition, you can access this tool quickly to get an idea of what could be causing you problems. All the performance monitoring tools (Task Manager, Event Viewer, Network Monitor, and Performance Monitor) are great at getting granular information on potential problems.

The Event Viewer
The Event Viewer is also useful for monitoring Active Directory information. Specifically, you can use the Directory Service log to view any information, warnings, or alerts related to the
Monitoring and Troubleshooting Active Directory Components

proper functioning of the directory services. You can access the Event Viewer by selecting Start ➔ Programs ➔ Administrative Tools ➔ Event Viewer. Clicking any of the items in the left pane displays the various events that have been logged for each item. The contents of Directory Service log are shown in Figure 10.16.

FIGURE 10.16 The Directory Service log in Event Viewer

Each event is preceded by a blue “i” icon. That icon designates that these events are informational and do not indicate problems with the Directory Service. Rather, they record benign events such as Active Directory startup or a domain controller finding a Global Catalog server.

Problematic or potentially problematic events are indicated by a yellow Warning icon or a red Error icon, both of which are shown in Figure 10.17. Warnings usually indicate a problem that wouldn’t prevent a service from running but might cause undesired effects with the service in question. For example, we were configuring a site with some fictional domain controllers and IP addresses. Our local domain controller’s IP address wasn’t associated with any of the sites, and the Event Viewer generated a Warning. In this case, the local domain controller could still function as a domain controller, but the site configuration could produce undesirable results.
Error events almost always indicate a failed service, application, or function. For instance, if the dynamic registration of a DNS client fails, the Event Viewer generates an Error. As you can see, errors are more severe than warnings, because in this case, the DNS client cannot participate in DNS at all.

Double-clicking any event opens the event’s Properties dialog box, as shown in Figure 10.18. The Event Properties dialog box displays a detailed description of the event.

FIGURE 10.17 Information, Errors, and Warnings in Event Viewer

FIGURE 10.18 The Event Properties dialog box
The Event Viewer can display thousands of different events, so it would be impossible to list them all here. Just be aware that information events are always benign, warnings indicate noncritical problems, and errors indicate show-stopping events.

Troubleshooting Active Directory
Performance Monitoring

Monitoring performance is not always an easy process. As mentioned earlier, the act of performance monitoring can use up system resources. One of the problems that may then occur is that Performance Monitor cannot obtain performance statistics and information quickly enough. If this occurs, you’ll receive an error message. In this case, the suggestion is to increase the sample interval. This will reduce the number of statistics Performance Monitor has to record and display, and it may prevent the loss of performance information.

Sometimes, when you’re viewing performance information in the Chart or Histogram view, the data is either too small (the bar or line is too close to the baseline) or too large (the bar or line is above the maximum value). In either case, you’ll want to adjust the scale for the counter so that you can accurately see information in the display. For example, if the scale for the number of logons is 1 when it displays values from 0 to 100 and you frequently have more than 100 users per server, you might want to change the scale to a value less than 1. If you choose \(\frac{1}{10} \), you will be able to accurately see up to 1000 user logons in the Chart and Histogram views. You can adjust the scale by right-clicking Performance Monitor display, selecting Properties, and then accessing the Data tab.

Backup and Recovery of Active Directory

If you have deployed Active Directory in your network environment, your users now depend on it to function properly in order to do their jobs. From network authentications to file access to print and web services, Active Directory has now become a mission-critical component of your business. Therefore, the importance of backing up the Active Directory data store should be evident. As we discussed in earlier chapters, it is important to have multiple domain controllers available to provide backup in case of a problem. The same goes for Active Directory itself—it too should be backed up by being saved. This way, if a massive disaster occurs in which you need to restore your directory services, you will have that option available to you.

Backups are just good common sense, but here are several specific reasons to back up data:

Protect against hardware failures. Computer hardware devices have finite lifetimes, and all hardware eventually fails. We discussed this when we mentioned MTBF earlier. MTBF is the average time a device will function before it actually fails. There is also a rating derived from benchmark testing of hard disk devices that tells you when you may be at risk for an unavoidable disaster. Some types of failures, such as corrupted hard disk drives, can result in significant data loss.
Protect against accidental deletion or modification of data. Although the threat of hardware failures is very real, in most environments, mistakes in modifying or deleting data are much more common. For example, suppose a systems administrator accidentally deletes all of the objects within a specific OU. Clearly, it’s very important to be able to retrieve this information from a backup.

Keep historical information. Users and systems administrators sometimes modify files and then later find that they require access to an older version of the file. Or a file is accidentally deleted, and a user does not discover that fact until much later. By keeping multiple backups over time, you can recover information from prior backups when necessary.

Protect against malicious deletion or modification of data. Even in the most secure environments, it is conceivable that unauthorized users (or authorized ones with malicious intent!) could delete or modify information. In such cases, the loss of data might require valid backups from which to restore critical information.

Windows Server 2008 includes a Backup utility that is designed to back up operating system files and the Active Directory data store. It allows for basic backup functionality, such as scheduling backup jobs and selecting which files to back up. Figure 10.19 shows the main screen for the Windows Server 2008 Backup utility.

FIGURE 10.19 The main screen of the Windows Server 2008 Backup utility

In the following sections, we’ll look at the details of using the Windows Server 2008 Backup utility and how you can restore Active Directory when problems do occur.
Overview of the Windows Server 2008 Backup Utility

Although the general purpose behind performing backup operations—protecting information—is straightforward, systems administrators must consider many options when determining the optimal backup and recovery scenario for their environment. Factors include what to back up, how often to back up, and when the backups should be performed.

In this section, you’ll see how the Windows Server 2008 Backup utility makes it easy to implement a backup plan for many network environments.

Although the Windows Server 2008 Backup utility provides the basic functionality required to back up your files, you may want to investigate third-party products that provide additional functionality. These applications can provide options for specific types of backups (such as those for Exchange Server and SQL Server), as well as disaster recovery options, networking functionality, centralized management, and support for more advanced hardware.

Backup Types

One of the most important issues you will have to deal with when you are performing backups is keeping track of which files you have backed up and which files you need to back up. Whenever a backup of a file is made, the Archive bit for the file is set. You can view the attributes of system files by right-clicking them and selecting Properties. By clicking the Advanced button on the Properties dialog box, you will access the Advanced Attributes dialog box. Here you will see the option File Is Ready For Archiving. Figure 10.20 shows an example of the attributes for a file.

![Figure 10.20: Viewing the Archive attributes for a file](image)

Although it is possible to back up all of the files in the filesystem during each backup operation, it's sometimes more convenient to back up only selected files (such as those that have changed since the last backup operation). When performing backups, you can backup to
removable media (such as tape) or to a network location. It is not recommended to do a backup to a network location unless absolutely necessary. The reason for this is that if your company suffers from a disaster (fire, hurricane, etc.), your data can all still be lost—including the backup. If you backup to a removable media source, a copy of the backup can be taken off-site. This protects against a major disaster. Several types of backups can be performed:

Normal Normal backups (also referred to as full backups) back up all of the selected files and then mark them as backed up. This option is usually used when a full system backup is made.

Copy Copy backups back up all of the selected files, but do not mark them as backed up. This is useful when you want to make additional backups of files for moving files offsite or you want to make multiple copies of the same data for archival purposes.

Incremental Incremental backups copy any selected files that are marked as ready for backup (typically because they have not been backed up, or they have been changed since the last backup) and then mark the files as backed up. When the next incremental backup is run, only the files that are not marked as having been backed up are stored. Incremental backups are used in conjunction with Normal (Full) backups. The most common backup process is to make a full backup and then make subsequent incremental backups. The benefit to this method is that only files that have changed since the last full or incremental backup will be stored. This can reduce backup times and disk or tape storage space requirements.

When recovering information from this type of backup method, a systems administrator must first restore the full backup and then restore each of the incremental backups.

Differential Differential backups are similar in purpose to incremental backups with one important exception: Differential backups copy all files that are marked for backup but do not mark the files as backed up. When restoring files in a situation that uses normal and differential backups, you only need to restore the normal backup and the latest differential backup.

Daily Daily backups back up all files that have changed during a single day. This operation uses the file time/date stamps to determine which files should be backed up and does not mark the files as having been backed up.

Figure 10.21 shows the Windows Server 2008 Backup Utility Optimize Backup Performance dialog box and the three choices for backup types.

Note that systems administrators might choose to combine normal, daily, incremental, and differential backup types as part of the same backup plan. In general, however, it is sufficient to use only one or two of these methods (for example, normal backups with incremental backups). If you require a combination of multiple backup types, be sure that you fully understand which types of files are being backed up.
Backing Up System State Data

When you are planning to back up and restore Active Directory, be aware that the most important component is known as the System State data. System State data includes the components that the Windows Server 2008 operating system relies on for normal operations. The Windows Server 2008 Backup utility offers you the ability to back up the System State data to another type of media (such as a hard disk, network share, or tape device). Specifically, it will back up the following components for a Windows Server 2008 domain controller.

Active Directory The Active Directory data store is at the heart of Active Directory. It contains all of the information necessary to create and manage network resources, such as users and computers. In most environments that use Active Directory, users and systems administrators rely on the proper functioning of these services in order to do their jobs.

Boot files Boot files are the files required for booting the Windows Server 2008 operating system and can be used in the case of boot file corruption.

COM+ Class Registration database The COM+ Class Registration database is a listing of all of the COM+ Class registrations stored on the computer. Applications that run on a Windows Server 2008 computer might require the registration of various share code components. As part of the System State backup process, Windows Server 2008 stores all of the information related to Component Object Model+ (COM+) components so that it can be quickly and easily restored.

Registry The Windows Server 2008 Registry is a central repository of information related to the operating system configuration (such as desktop and network settings), user settings, and application settings. Therefore, the Registry is absolutely vital to the proper functioning of Windows Server 2008.
SYSVOL Directory The SYSVOL directory includes data and files that are shared between the domain controllers within an Active Directory domain. This information is relied upon by many operating system services for proper functioning.

Scheduling Backups
In addition to specifying which files to back up, you can schedule backup jobs to occur at specific times. Planning when to perform backups is just as important as deciding what to back up. Performing backup operations can reduce overall system performance; therefore, you should plan to back up information during times of minimal activity on your servers. Figure 10.22 shows the Backup Schedule Wizard of the Windows Server 2008 Backup utility.

FIGURE 10.22 Scheduling jobs using the Windows Server 2008 Backup utility

To add a backup operation to the schedule, you can simply click the Add button on the Specify Backup Time window.

Restoring System State Data
In some cases, the Active Directory data store or other System State data may become corrupt or unavailable. This could be due to many different reasons. A hard disk failure might, for example, result in the loss of data. Or the accidental deletion of an OU and all of its objects might require a restore operation to be performed.

The actual steps involved in restoring System State data are based on the details of what has caused the data loss and what effect this data loss has had on the system. In the best case, the System State data is corrupt or inaccurate, but the operating system can still boot. If this is the case, all that you must do is boot into a special Directory Services Restore mode (DSRM) and then restore the System State data from a backup. This process will replace the current System
State data with that from the backup. Therefore, any changes that have been made since the last backup will be completely lost and must be redone.

In a worst-case scenario, all of the information on a server has been lost or a hardware failure is preventing the machine from properly booting. If this is the case, here are several steps that you must take in order to recover System State data:

1. Fix any hardware problem that might prevent the computer from booting (for example, replace any failed hard disks).
2. Reinstall the Windows Server 2008 operating system. This should be performed like a regular installation on a new system.
3. Reinstall any device drivers that may be required by your backup device. If you backed up information to the filesystem, this will not apply.

We’ll cover the technical details of performing restores later in this section. For now, however, you should understand the importance of backing up information and, whenever possible, testing the validity of backups.

Backing up Group Policy Objects

Group Policy Objects (GPOs) are a major part of Active Directory. When you back up Active Directory, GPOs can also get backed up. You also have the ability to backup GPOs through the Group Policy Management Console (GPMC). This gives you the ability to back up and restore individual GPOs.

To back up all GPOs, open the GPMC and right click on the Group Policy Objects container. You will see an option to Back Up All. After you choose this option, a wizard will start asking you for the backup location. Choose a location and click backup.

To back up an individual GPO, right click on the GPO (in the Group Policy Objects container) and choose Backup. Again, after you choose this option, a wizard will start asking you for the backup location. Choose a location and click Backup.

To restore a GPO, it’s the same process as above except instead of choosing Backup, you will either choose Manage Backups (to restore all GPOs) or Restore (for an individual GPO).

Backing Up Active Directory

The Windows Server 2008 Backup utility makes it easy to back up the System data (including Active Directory) as part of a normal backup operation. We’ve already covered the ideas behind the different backup types and why and when they are used. Exercise 10.2 walks you through the process of backing up the domain controller. In order to complete this exercise, the local machine must be a domain controller, and you must have sufficient free space to back up the System State (usually at least 500MB).
EXERCISE 10.2

Backing Up Active Directory

1. To install the Windows Server 2008 Backup utility, click Start ➤ Administrative Tools ➤ Server Manager. In the left pane, click Features. In the right pane click Add Features.

2. In the Select Features window, scroll down and check the Windows Server Backup check box. Click Next.
3. On the Confirm Installation Selections screen, click the Install button.

4. After the installation is complete, close Server Manager.

5. Open the Backup utility by clicking Start ➤ Administrative Tools ➤ Backup.

6. In the Windows Server Backup utility, click Action ➤ Backup Once. This is how you schedule a one-time backup. The Action menu also contains the Backup Schedule (set a daily backup time), Recover, and Configure Performance Settings commands.
EXERCISE 10.2 (continued)

7. The Backup Once Wizard appears. Make sure the radio button labeled Different Options is checked and click Next.

8. In the Select Items window, click the Custom radio button. Click Next.

The Full Server—Recommended option does a complete backup of the system.
9. In the Backup Items window, make sure that the check box labeled “I want to be able to perform a system recovery using this backup” is checked. Once this box is checked, the local disk box will also be checked. Click Next.

10. In the Specify Location Type screen, choose Local Drives. These options help you determine where your backup file is going to be stored. Click Next.
11. In the Select Backup Location screen, choose a local drive that has enough space for the backup. Click Next.

12. Verify all your choices in the Summary screen and choose the Backup button.
Restoring Active Directory

Active Directory has been designed with fault tolerance in mind. For example, it is highly recommended by Microsoft that each domain have at least two domain controllers. Each of these domain controllers contains a copy of the Active Directory data store. Should one of the domain controllers fail, the available one can take over the failed server’s functionality. When the failed server is repaired, it can then be promoted to a domain controller in the existing environment. This process effectively restores the failed domain controller without incurring any downtime for end users because all of the Active Directory data is replicated to the repaired server in the next scheduled replication.

In some cases, you might need to restore Active Directory from a backup. For example, suppose a systems administrator accidentally deletes several hundred users from the domain and does not realize it until the change has been propagated to all of the other domain controllers. Manually re-creating the accounts is not an option because the objects’ security identifiers will be different (and all permissions must be reset). Clearly, a method for restoring from backup is the best solution. You can elect to make the Active Directory restore authoritative or non-authoritative, as described in the following sections.

13. The Backup Progress screen will show you the status of your backup. Once the backup is complete, close the Windows Server 2008 Backup utility.
Overview of Authoritative Restore

Restoring Active Directory and other System State data is an important process should system files or the Active Directory data store become corrupt or otherwise unavailable. Fortunately, the Windows Server 2008 Backup utility allows you to easily restore data from a backup, should the need arise.

We mentioned earlier that in the case of the accidental deletion of information from Active Directory, you may need to restore the Active Directory from a recent backup. But what happens if there is more than one domain controller in the environment? Even if you did perform a restore, the information on this domain controller would be seen as outdated and it would be overwritten by the data from another domain controller. This data from the older domain controller is exactly the information you want to replace. The domain controller that was reloaded using a backup would have an older timestamp and the other domain controllers would re-delete the information from the backup.

Fortunately, Windows Server 2008 and Active Directory allow you to perform what is called an authoritative restore. The authoritative restore process specifies a domain controller as having the authoritative (or master) copy of the Active Directory data store. When other domain controllers communicate with this domain controller, their information will be overwritten with Active Directory data stored on the local machine.

Now that we have an idea of how an authoritative restore is supposed to work, let’s move on to looking at the details of performing the process.

Performing an Authoritative Restore

When you are restoring Active Directory information on a Windows Server 2008 domain controller, make sure Active Directory services are not running. This is because the restore of System State data requires full access to system files and the Active Directory data store. If you attempt to restore System State data while the domain controller is active, you will see the error message shown in Figure 10.23.

FIGURE 10.23 Attempting to restore System State while a domain controller is active

In general, restoring data and operating system files is a straightforward process. It is important to note that restoring a System State backup will replace the existing Registry, Sysvol, and Active Directory files, so any changes you made since the last backup will be lost.
Exercise 10.3 walks you through the process of performing an authoritative restore on the System State and Active Directory information. This process uses the ntdsutil utility—which we first saw back in Chapter 3, “Active Directory Planning and Installation”—to set the authoritative restore mode for a domain controller after the System State is restored but before the domain controller is rebooted. In order to complete this process, you must have first completed the steps in Exercise 10.2.

Any changes made to Active Directory after the backup performed in Exercise 10.2 will be lost after you complete Exercise 10.3.

EXERCISE 10.3

Restoring the System State and Active Directory

1. Reboot the local machine. When the machine starts to boot up, press the F8 key to enter the Windows Server 2008 advanced options.

 Advanced Boot Options

 Choose Advanced Options for: Microsoft Windows Server 2008
 (Use the arrow keys to highlight your choice.)
 Safe Mode
 Safe Mode with Networking
 Safe Mode with Command Prompt
 Enable Boot Logging
 Enable low-resolution video (640x480)
 Last Known Good Configuration (advanced)
 Directory Services Restore Mode
 Debugging Mode
 Disable automatic restart on system failure
 Disable Driver Signature Enforcement
 Start Windows Normally

 Description: Start Windows in Directory Services Repair Mode (for Windows domain controllers only).

 ENTER=Choose ESC=Cancel
EXERCISE 10.3 (continued)

2. From the boot menu, choose Directory Services Restore Mode and press Enter. The operating system will begin to boot in safe mode.

3. Log on to the computer as a member of the local Administrators group. Note that you cannot log on using an Active Directory account since network services and Active Directory have not been started.

4. You may see a message warning you that the machine is running in safe mode and that certain services will not be available. For example, a minimal set of drivers has been loaded, and you will not have access to the network. Click OK to continue. You will notice the label Safe Mode in the corners of the screen.

5. When the operating system has finished booting, open the Backup utility by clicking Start ➤ Administrative Tools ➤ Backup.
6. The Backup utility will begin. Click Action and then choose Recover.

7. The Recovery Wizard appears. Make sure the button labeled This Server is selected and click Next.
EXERCISE 10.3 (continued)

8. On the Select Date page, click the date of the backup that you created in the previous exercise. Click Next to continue.

9. On the Select Recovery Type page, click the Files And Folders radio button. Click Next to continue.
10. On the Select Items To Recover page, you will see the server you backed up in the last exercise. Click the Local Disk (C:) and then click Next.

11. If a warning box appears, just click OK.

12. On the Specify Recovery Options page, choose Another Location and click the Browse button. Choose a location on your hard disk to restore the files. Do not overwrite your hard disk for this exercise! Click Next.
In addition to restoring the entire Active Directory database, you can also restore just specific subtrees within Active Directory using the `restore subtree` command in the ntdsutil utility. This allows you to restore specific information and is useful in the case of an accidental deletion of isolated material.

Following the authoritative restore process, Active Directory should be updated to the time of the last backup. Furthermore, all other domain controllers for this domain will have their Active Directory information overwritten by the results of the restore operation. The end result is an Active Directory environment that has been recovered from media.

Overview of Nonauthoritative Restore

Now that you understand why you would use an authoritative restore and how it is performed, let’s talk about what a nonauthoritative restore is. Remember that by making a restore authoritative, you are simply telling other domain controllers in the domain to recognize the restored machine as the newest copy of Active Directory for replication purposes. If you only have one domain controller, the authoritative restore process becomes moot; you can simply skip the steps required to make the restore authoritative and begin using the domain controller immediately after the normal restore is complete.

If you have more than one domain controller in the domain and you need to perform a nonauthoritative restore, simply allow the domain controller to receive Active Directory database information from other domain controllers in the domain using normal replication methods.
Offline Maintenance with *ntdsutil.exe*

As you have seen in the last section, there are times when you have to be offline to do maintenance. For example, you need to perform authoritative and nonauthoritative restores while the domain controller is offline. The main utility we use for offline maintenance is ntdsutil.

The primary method by which systems administrators can do offline maintenance is through the ntdsutil command-line tool. You can launch this tool by simply entering `ntdsutil` at a command prompt. The `ntdsutil` command is both interactive and context-sensitive. That is, once you launch the utility, you’ll see an ntdsutil command prompt. At this prompt, you can enter various commands that set your context within the application. For example, if you enter *domain management*, you’ll be able to enter in domain-related commands. Several operations also require you to connect to a domain, a domain controller, or an Active Directory object before you perform a command.

Table 10.2 provides a list of the domain management commands supported by the ntdsutil tool. You can access this functionality by typing the command at a command prompt.

TABLE 10.2 ntdsutil Offline Maintenance Commands

<table>
<thead>
<tr>
<th>ntdsutil Domain Management Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Help or?</td>
<td>Displays information about the commands that are available within the Domain Management menu of the ntdsutil utility.</td>
</tr>
<tr>
<td>compact to (At the file maintenance prompt)</td>
<td>Allows you to compact the active directory database.</td>
</tr>
<tr>
<td>metadata cleanup</td>
<td>Removes metadata’s from decommissioned domain controllers.</td>
</tr>
<tr>
<td>Set DSRM Password</td>
<td>Resets directory service restore mode administrator account password.</td>
</tr>
</tbody>
</table>

Monitoring Replication

At times you may need to keep on eye on how your replication traffic is working on your domain controllers. We are going to examine two replication utilities that you can use to help determine problems on your domain.

RepAdmin Utility

The RepAdmin utility is included when you install Windows Server 2008. This command-line tool helps administrators diagnose replication problems between Windows domain controllers.

RepAdmin can allow administrators to view the replication topology of each domain controller as seen from the domain controller’s perspective. Administrators can also use RepAdmin to
manually create the replication topology. By manually creating the replication topology, administrators can force replication events between domain controllers and view the replication metadata vectors.

To access the RepAdmin utility, open a command prompt (Run ➔ CMD). At the command prompt, type **RepAdmin.exe** and all the available options will appear.

Replication Monitor

Replication Monitor has been used for years to monitor replication traffic. At the time that this book was written, a version of Replication Monitor for Windows Server 2008 had not yet been released. Instead, we will discuss Replication Monitor as it has been for many years. To see if a current version has been released, visit www.microsoft.com.

Replication Monitor is not installed on Windows Server 2008 computers by default; it is a support package installation. You can access the Replication Monitor by entering **replmon** in the Run dialog box.

The Replication Monitor window is initially empty; you must add one or more servers to the monitor window in order to derive any meaningful information from the tool. To add a server, right-click the Monitored Servers item in the left pane and select Add Monitored Server. The Add Monitored Server Wizard prompts you to enter or select a server from a list, which is a very straightforward process.

After you add a server to Replication Monitor, you can begin monitoring replication traffic. Figure 10.24 displays a single server in the left pane. You can see the different Active Directory partitions under the server name. You can use the Replication Monitor primarily for the following two purposes: checking for replication errors and initiating immediate domain controller synchronization.

FIGURE 10.24 The Replication Monitor
To check for replication errors, click the Action menu and select Domain > Search Domain Controllers For Replication Errors. In the Search Domain Controllers For Replication Errors dialog box, click the Run Search button to search domain controllers in the domain for errors. Any errors are displayed in the main section of the dialog box.

To synchronize Active Directory immediately, right-click a server name and select Synchronize Each Directory Partition With All Servers from the pop-up menu. Alternately, you can synchronize partitions individually by right-clicking a partition name and selecting Synchronize This Directory Partition with All Servers from the pop-up menu.

Summary

Although the tasks related to performance optimization and ensuring reliability of Active Directory domain controllers are only a small part of the seemingly endless tasks performed by systems administrators, they are very important in the overall health of a network environment. In this chapter, we covered many aspects associated with optimizing Active Directory and making it reliable. We showed you how to use many tools that can help you monitor and manage your systems and we discussed the basics of troubleshooting Active Directory in times of problem or disaster.

It is imperative that you monitor performance on domain controllers in order to root out any issues that may affect your systems. If your systems are not running optimally, your end users may experience issues such as latency, or worse, you may experience corruption in your Active Directory database. Either way, it’s important to know how to monitor the performance of domain controllers. In this chapter, we also looked at ways systems administrators can optimize the operations of domain controllers to ensure that end users receive adequate performance.

We also looked at how to use the various performance-related tools that are included with Windows Server 2008. Tools such as the Performance Monitor utility, Task Manager, Network Monitor, and Event Viewer can help you diagnose and troubleshoot system performance issues. As an administrator, you will often use these tools and they will definitely help you find typical problems related to memory, disk space, and any other hardware-related issues you may experience. Knowing how to use tools to troubleshoot and test your systems is not only imperative to passing the exam, but also to performing your duties at work. In order to have a smoothly running network environment, it is vital that you understand the issues related to the reliability and performance of Active Directory and domain controllers.

We also covered the details of performing backups, the most commonly used form of reliability you can implement. You learned how to back up and restore System State data using the Windows Server 2008 Backup utility. Through the use of wizards and prompts, this backup tool can simplify an otherwise tedious process. Knowing how to restore System State data and the Active Directory database can really put you a cut above the rest, especially in times of disaster. By using the authoritative restore functionality, you can revert all or part of an Active Directory environment back to an earlier state.
Exam Essentials

Understand the methodology behind troubleshooting performance. By following a set of steps that involves making measurements and finding bottlenecks, you can perform systematic troubleshooting of performance problems.

Be familiar with the features and capabilities of the Windows Server 2008 Performance Monitor tool for troubleshooting performance problems. Using the Performance administrative tool is a very powerful method for collecting data about all areas of system performance. Through the use of performance objects, counters, and instances, you can choose to collect and record only the data of interest and use this information for pinpointing performance problems.

Know the importance of common performance counters. Several important performance-related counters deal with general system performance. Know the importance of monitoring memory, CPU, and network usage on a busy server.

Understand the role of other troubleshooting tools. The Windows Task Manager, Network Monitor, and Event Viewer can all be used to diagnose and troubleshoot configuration- and performance-related issues.

Understand how to troubleshoot common sources of server reliability problems. Windows Server 2008 has been designed to be a stable, robust, and reliable operating system. Should you experience intermittent failures, you should know how to troubleshoot device drivers and buggy system-level software.

Understand the various backup types available with the Windows Server 2008 Backup utility. The Windows Server 2008 Backup utility can perform full and incremental backup operations. Some third-party backup utilities also support differential and daily backups. You can use each of these operations as part of an efficient backup strategy.

Know how to back up Active Directory. The data within the Active Directory database on a domain controller is part of the System State data. You can back up the System State to a file using the Windows Server 2008 Backup utility.

Know how to restore Active Directory. Restoring the Active Directory database is considerably different from other restore operations. In order to restore some or all of the Active Directory database, you must first boot the machine into Directory Services Restore mode.

Understand the importance of an authoritative restore process. You use an authoritative restore when you want to restore earlier information from an Active Directory backup and you want the older information to be propagated to other domain controllers in the environment.

Understand offline maintenance using ntdsutil. The ntdsutil command-line tool is a primary method by which systems administrators perform offline maintenance. Understand how to launch this tool by entering ntdsutil at a command prompt.

Be familiar with replication utilities. Know the two utilities for monitoring replication—repadmin.exe and replmon.exe. Know that the RepAdmin command-line tool helps administrators diagnose replication problems between Windows domain controllers.
Review Questions

1. Crystal is a systems administrator who is responsible for performing backups on several servers. Recently, she has been asked to take over operations of several new servers. Unfortunately, no information about the standard upkeep and maintenance of those servers is available. Crystal wants to begin by making configuration changes to these servers, but she wants to first ensure that she has a full backup of all data on each of these servers.

Crystal decides to use the Windows Server 2008 Backup utility to perform the backups. She wants to choose a backup type that will back up all files on each of these servers, regardless of when they were last changed or if they have been previously backed up. Which of the following types of backup operations store all of the selected files, without regard to the Archive bit setting?

A. Normal
B. Incremental
C. Copy
D. Differential

2. What utility is a command-line tool that helps administrators diagnose replication problems between Windows domain controllers?

A. RepAdmin
B. RepWatch
C. RepUtility
D. RepAlert

3. A systems administrator boots the operating system using the Directory Services Restore mode. He attempts to log in using a Domain Administrator account, but is unable to do so. What is the most likely reason for this?

A. The account has been disabled by another domain administrator.
B. The permissions on the domain controller do not allow users to log on locally.
C. The Active Directory service is unavailable, and he must use the local Administrator password.
D. Another domain controller for the domain is not available to authenticate the login.

4. Which of the following types of backup operations should a systems administrator use to back up all of the files that have changed since the last full backup or incremental backup and to mark these files as having been backed up?

A. Differential
B. Copy
C. Incremental
D. Normal
5. Following an authoritative restore of the entire Active Directory database, what will happen to the copy of Active Directory on other domain controllers for the same domain?
 A. The copies of Active Directory on other domain controllers will be overwritten.
 B. The information on all domain controllers will be merged.
 C. The other domain controllers will be automatically demoted.
 D. The copies of Active Directory on the restored domain controller will be overwritten.

6. Which of the following ntdsutil commands is used to perform an authoritative restore of the entire Active Directory database?
 A. restore active directory
 B. restore database
 C. restore subtree
 D. restore all

7. You are responsible for managing several Windows Server 2008 domain controller computers in your environment. Recently, a hard disk on one of these machines failed, and the Active Directory database was lost. You want to perform the following tasks:
 • Determine which partitions on the server are still accessible.
 • Restore as much of the system configuration (including the Active Directory database) as is possible.

 Which of the following could you use to help meet these requirements?
 A. Event Viewer
 B. Performance Monitor
 C. A hard disk from another server that is not configured as a domain controller
 D. A valid System State backup from the server

8. You have been hired as a consultant to research a network-related problem at a small organization. The environment supports many custom-developed applications that are not well documented. A manager suspects that one or more computers on the network are generating excessive traffic and bogging down the network. You want to do the following:
 • Determine which computers are causing the problems.
 • Record and examine network packets that are coming to/from specific machines.
 • View data related only to specific types of network packet.

 What tool should you use to accomplish all of the requirements?
 A. Task Manager
 B. Performance Monitor
 C. Event Viewer
 D. Network Monitor
9. Which of the following is not backed up as part of the Windows Server 2008 System State on a domain controller?
 A. Registry
 B. COM+ Registration information
 C. Boot files
 D. Active Directory database information
 E. User profiles

10. Which of the following System Monitor performance objects can you use to measure performance statistics related to Active Directory? (Choose all that apply.)
 A. Directory Services
 B. LDAP
 C. Network
 D. Replication
 E. NTDS

11. You are the system administrator for your company. Your new users have not been replicating properly on your Windows Server 2008 server. Which utility can you use to check the replication of your domain controllers?
 A. RepConsole
 B. RepAdmin
 C. RepView
 D. RepMonitor

12. Robert is a systems administrator who is responsible for performing backups on several servers. Recently, he has been asked to take over operations of several new servers, including backup operations. He has the following requirements:
 - The backup must finish as quickly as possible.
 - The backup must use the absolute minimum amount of storage space.
 - He must perform backup operations at least daily with a full backup at least weekly.

 Robert decides to use the Windows Server 2008 Backup utility to perform the backups. He wants to choose a set of backup types that will meet all of these requirements. He decides to back up all files on each of these servers every week. Then, he decides to store only the files that have changed since the last backup operation (regardless of type) during the weekdays. Which of the following types of backup operations should he use to implement this solution? (Choose two.)
 A. Normal
 B. Daily
 C. Copy
 D. Differential
 E. Incremental
13. A systems administrator suspects that a domain controller is not operating properly. Another systems administrator has been monitoring the performance of the server and has found that this is not a likely cause of the problems. Where can the first systems administrator look for more information regarding details about any specific problems or errors that may be occurring?

A. Task Manager
B. Network Monitor
C. Performance Monitor
D. Event Viewer

14. Which of the following System Monitor views displays performance information over a period of time?

A. Graph
B. Histogram
C. Report
D. Current Activity

15. You are using the Backup Wizard to back up Active Directory. You want to ensure that the entire Active Directory is backed up while maintaining a minimum backup file size. In the following screen, where would you click in order to accomplish this task?

A. “I want to be able to perform a system recovery using this backup.”
B. Local Disk (C:).
C. Nothing—This screen does not back up the System State data.
D. The Next button.
16. In your current capacity as network administrator, you are looking to diagnose a problem with your current network infrastructure. You have 20 Windows Server 2008 servers and 1000 Windows XP Professional workstations spread out across 6 subnets. You need to test the connections between each pair of servers and determine how each server connects to the network switches that are used to build the core of the network. All servers run fine except for one. Which of the following lists of tools would you use to troubleshoot this server?

A. Event Viewer, Performance Monitor, Network Monitor
B. Task Manager, Network Monitor, Server Monitor
C. Performance Monitor, System logs, Task Manager
D. Event Viewer, Network Sniffer, NTBACKUP

17. You are the systems engineer responsible for 123 Ltd.’s new division. You need to deploy five new Windows Server 2008 systems. What do you need to do in order to make sure that you understand the normal load put on the systems under normal operations?

A. Set up Task Manager.
B. Establish a baseline of current performance.
C. Deploy the Alerts in the Performance Console.
D. Use Network Monitor to see current and future load.

18. As the IT Manager for your company’s technology division, you are asked to deploy a method of finding problems on your connection to the network. You have three Windows Server 2008 systems and each is set up as a domain controller. What tools are incorporated with each server that will help you find problems on the network, more specifically on the network medium?

A. Task Monitor
B. Performance Monitor
C. Network Monitor
D. Event Monitor

19. You are the systems administrator for your company and are responsible for the Active Directory infrastructure. After a disaster, you are asked to restore the Active Directory System State data information on a Windows Server 2008 domain controller. You try to run the restore and you get an error message. You are unable to perform the restore. From the list of possible choices, what may be causing this problem to occur?

A. Active Directory services are running.
B. DNS services are still running.
C. The Backup service is not running.
D. The TCP/IP service is not running.
20. You have been asked to deploy counters to monitor your CPU on a server that is performing poorly. What is the process of adding the % Processor Time counter and the _Total instance counters on a Windows Server 2008 system?

A. In the Add Counters dialog box, select Use Local Computer Counters. Choose the CPU performance object from the Performance Object list, and then click Select Counters From List. Select the % Processor Time counter and the _Total instance.

B. In the Add Counters dialog box, select Use Local Computer Counters. Choose the PROC performance object from the Performance Object list, and then click Select Counters From List. Select the % Processor Time counter and the _Total instance.

C. In the Add Counters dialog box, select Use Local Computer Counters. Choose the DISK performance object from the Performance Object list, and then click Select Counters From List. Select the % Processor Time counter and the _Total instance.

D. In the Add Counters dialog box, select Use Local Computer Counters. Choose the Processor performance object from the Performance Object list, and then click Select Counters From List. Select the % Processor Time counter and the _Total instance.
Answers to Review Questions

1. A. Normal and Copy backup operations do not use the Archive bit to determine which files to back up, and they will include all files that are selected for backup on the server. The other backup types will store only a subset of files based on their dates or whether or not they have been previously backed up. The Windows Server 2008 Backup utility supports Normal backups but does not support Copy backups. For this reason, Crystal should choose a Normal backup to ensure that she performs a valid backup of all files on the servers before she makes any configuration changes.

3. C. When booting in Directory Services Restore mode, Active Directory is not started, and network services are disabled. Therefore, the systems administrator must use a local account in order to log in.

4. C. Incremental backup operations copy files and mark them as having been backed up. Therefore, a system administrator uses them when they want to back up only the files that have changed since the last full or incremental backup. Differential backups, although they will also back up only files that were created or changed since the last full or incremental backup, will not mark the files as having been backed up.

5. A. In an authoritative restore of the entire Active Directory database, the restored copy will override information stored on other domain controllers.

6. B. The restore database command instructs the ntdsutil application to perform an authoritative restore of the entire Active Directory database.

7. D. You can recover System State data from a backup, which always includes the Active Directory database. In this case, the Event Viewer and System Monitor wouldn’t help you recover the database, but they might help you determine why the hard drive crashed in the first place.

8. D. Through the use of the Network Monitor application, you can view all of the network packets that are being sent to or from the local server. Based on this information, you can determine the source of certain types of traffic, such as pings. The other types of monitoring can provide useful information, but they do not allow you to drill down into the specific details of a network packet, nor do they allow you to filter the data that has been collected based on details about the packet.

9. E. The System State backup includes information that can be used to rebuild a server’s basic configuration. All of the information listed, except for user profile data, is backed up as part of a System State backup operation.

10. A, B, C, D, E. The various counters that are part of the NTDS performance object provide information about the performance of various aspects of Active Directory. By collecting information for each of these performance objects, you can determine what areas of system performance might be having problems.
11. B. RepAdmin is a command line utility used to view and configure Windows Server 2008 replication between domain controllers.

12. A, E. In order to meet the requirements, Robert should use the normal backup type to create a full backup every week and the incremental backup type to back up only the data that has been modified since the last full or incremental backup operation.

14. A. Using the Graph view, you can view performance information over a period of time (as defined by the sample interval). The Histogram and Report views are designed to show the latest performance statistics and average values.

15. A. “I want to be able to perform a system recovery using this backup” is what you want to click. Once this check box is checked, the Local Disk (C:) will automatically become checked.

16. A. Event Viewer is used to show you informational- and warning-based events tracked by the system. The logs are useful for finding problems in your system. Performance Monitor is used to monitor performance objects, set counters, and establish a baseline of your system. Network Monitor is used to look at the traffic (to the packet level) on your network. All tools are used to help find problems in your system.

17. B. By establishing a baseline of the current performance of your systems, you get an idea of how they perform normally, and then you will know when they aren’t performing as expected because the charts will be off. Make sure you document this procedure and consider setting up a linear rather than circular log.

18. C. Network Monitor is used to find network problems at the packet level. Make sure you are familiar with this tool for both the exam and in production environments where you can use it.

19. A. When you are restoring Active Directory System State data information on a Windows Server 2008 domain controller, make sure Active Directory services are not running. You need to do this because the restore of System State data requires full access to system files and the Active Directory data store. If you attempt to restore System State data while the domain controller is active, you will see an error message. All other listed services will not interfere with the restore.

20. D. In the Add Counters dialog box, you first need to select Use Local Computer Counters. Then you need to choose the Processor performance object from the Performance Object list, and then click Select Counters From List. Finally, select the % Processor Time counter and the _Total instance.
About the Companion CD

IN THIS APPENDIX:
✓ What you’ll find on the CD
✓ System requirements
✓ Using the CD
✓ Troubleshooting
What You’ll Find on the CD

The following sections are arranged by category and provide a summary of the software and other goodies you’ll find on the CD. If you need help with installing the items provided on the CD, refer to the installation instructions in the Using the CD section of this appendix.

Some programs on the CD might fall into one of these categories:

* Shareware programs are fully functional, free, trial versions of copyrighted programs. If you like particular programs, register with their authors for a nominal fee and receive licenses, enhanced versions, and technical support.

* Freeware programs are free, copyrighted games, applications, and utilities. You can copy them to as many computers as you like—for free—but they offer no technical support.

* GNU software is governed by its own license, which is included inside the folder of the GNU software. There are no restrictions on distribution of GNU software. See the GNU license at the root of the CD for more details.

* Trial, demo, or evaluation versions of software are usually limited either by time or functionality (such as not letting you save a project after you create it).

Sybex Test Engine

For Windows

The CD contains the Sybex Test Engine, which includes all of the Assessment Test and Chapter Review questions in electronic format, as well as two bonus exams located only on the CD.

PDF of the Book

For Windows

We have included an electronic version of the text in .pdf format. You can view the electronic version of the book with Adobe Reader.

Adobe Reader

For Windows

We’ve also included a copy of Adobe Reader, so you can view PDF files that accompany the book’s content. For more information on Adobe Reader or to check for a newer version, visit Adobe’s website at http://www.adobe.com/products/reader/.
Electronic Flashcards

For PC, Pocket PC and Palm

These handy electronic flashcards are just what they sound like. One side contains a question or fill in the blank, and the other side shows the answer.

System Requirements

Make sure that your computer meets the minimum system requirements shown in the following list. If your computer doesn’t match up to most of these requirements, you may have problems using the software and files on the companion CD. For the latest and greatest information, please refer to the ReadMe file located at the root of the CD-ROM.

- A PC running Microsoft Windows 98, Windows 2000, Windows NT4 (with SP4 or later), Windows Me, Windows XP, or Windows Vista
- An Internet connection
- A CD-ROM drive

Using the CD

To install the items from the CD to your hard drive, follow these steps:

1. Insert the CD into your computer’s CD-ROM drive. The license agreement appears.

 NOTE

 Windows users: The interface won’t launch if you have Autorun disabled. In that case, click Start ➤ Run (for Windows Vista, Start ➤ All Programs ➤ Accessories ➤ Run). In the dialog box that appears, type D:\Start.exe. (Replace D with the proper letter if your CD drive uses a different letter. If you don’t know the letter, see how your CD drive is listed under My Computer.) Click OK.

2. Read through the license agreement, and then click the Accept button if you want to use the CD.

 The CD interface appears. The interface allows you to access the content with just one or two clicks.
Troubleshooting

Wiley has attempted to provide programs that work on most computers with the minimum system requirements. Alas, your computer may differ, and some programs may not work properly for some reason.

The two likeliest problems are that you don’t have enough memory (RAM) for the programs you want to use, or you have other programs running that are affecting installation or running of a program. If you get an error message such as “Not enough memory” or “Setup cannot continue,” try one or more of the following suggestions and then try using the software again:

- **Turn off any antivirus software running on your computer.** Installation programs sometimes mimic virus activity and may make your computer incorrectly believe that it’s being infected by a virus.
- **Close all running programs.** The more programs you have running, the less memory is available to other programs. Installation programs typically update files and programs; so if you keep other programs running, installation may not work properly.
- **Have your local computer store add more RAM to your computer.** This is, admittedly, a drastic and somewhat expensive step. However, adding more memory can really help the speed of your computer and allow more programs to run at the same time.

Customer Care

If you have trouble with the book’s companion CD-ROM, please call the Wiley Product Technical Support phone number at (800) 762-2974. Outside the United States, call +1(317) 572-3994. You can also contact Wiley Product Technical Support at http://sybex.custhelp.com. John Wiley & Sons will provide technical support only for installation and other general quality control items. For technical support on the applications themselves, consult the program’s vendor or author.

To place additional orders or to request information about other Wiley products, please call (877) 762-2974.
Glossary
Active Directory Installation Wizard (DCPROMO) A command-line tool used to promote a Windows Server 2008, 2003, or 2000 Server computer to a domain controller. Using the Active Directory Installation Wizard, systems administrators can create trees and forests. See also promotion.

Active Directory Integrated DNS zone Primary zone with Active Directory Integration. The zone database is stored in Active Directory.

Active Directory replication A method by which Active Directory domain controllers synchronize information. See also intersite replication and intrasite replication.

Add or Remove Programs Pre-Vista and Windows Server 2008 Control Panel applet that allows software applications and components of the operating system to be installed and uninstalled.

administrative template Template that specifies additional options that can be set by an administrator using the Group Policy Editor tool. This template provides a list of user-friendly configuration options and specifies the system settings to which they apply. When an option is set, the appropriate change is made in the Registry. Windows Server 2008 comes with several administrative template files. You can also create your own administrative templates.

application assignment script Script file that specifies which applications are assigned to users of the Active Directory. These files are created by administrators when Group Policy is used to create software package assignments for users and computers.

application data partitions Applications that rely on Active Directory have the ability to use an application’s data partitions to store application-specific data. Applications, services, or administrators can create application data partitions as container objects.

assigning One of two processes by which applications are made available to computers and/or users. See also publishing.

auditing The act of recording specific actions that are taken within a secure network operating system. Auditing is often used by administrators as a security measure to provide for accountability. Typical audited events include logon and logoff events, as well as accessing files and objects.

authoritative restore Specifies that the contents of a certain portion of the Active Directory on a domain controller should override any changes on other domain controllers, regardless of their sequence numbers. An authoritative restore is used to restore the contents of the Active Directory to a previous point in time.
background zone loading An Active Directory feature that allows an Active Directory Integrated DNS zone to load in the background. This means that a DNS server can service client requests while the zone is still loading into memory.

bidirectional trust See two-way trust.

bottleneck Occurs when the flow of packets transmitted across network media slows down. Packets then accumulate and get backed up on the network.

bridgehead server Used in Windows Server 2008 replication to coordinate the transfer of replicated information between Active Directory sites.

certificate revocation The process of revoking a certificate from a user or computer. See also certificate revocation list (CRL).

certificate revocation list (CRL) This list shows all the certificates that have been revoked. This list is published to a location that all certificate authority servers can access. See also CRL distribution point (CDP).

client Host that connects to a server based machine.

Computer object An Active Directory object that is a security principal and that identifies a computer that is part of a domain.

Connection object An object that can be defined as part of the Active Directory’s replication topology using the Active Directory Sites And Services tool. Connection objects are automatically created to manage Active Directory replication, and administrators can use them to manually control details about how and when replication operations occur.

connector A software add-on that allows different types of applications or servers to communicate with each other. A connector acts as a translator for computer systems or applications. Many connectors are included with Active Directory.

Contact object Active Directory object that defines the contact information for a single entity such as an individual or company. Usually used in organizational units (OUs) to specify the main administrative contact and other individuals within the organization. Contact objects are not security principals like User objects. They are primarily used for reference or automatic mailing lists.

Copy backup A backup type that backs up selected folders and files but does not set the archive bit.
Counter logs Files that contain information collected by the Windows Performance tool. Counter logs can be used to track and analyze performance-related statistics over time.

CRL distribution point (CDP) A shared location containing the certificate revocation list. See also certificate revocation list (CRL).

cross-forest trust A Windows Server 2008 feature that lets you implement trusts between all domains in one forest and all domains in another forest.

D

Daily backup A backup type that backs up all of the files that have been modified on the day that the daily backup is performed. The Archive attribute is not set on the files that have been backed up.

DCPROMO See Active Directory Installation Wizard (DCPROMO).

delegation The process by which a user who has higher-level security permissions grants certain permissions over Active Directory objects to users who are lower-level security authorities. Delegation is often used to distribute administrative responsibilities in a network environment.

Delegation of Control Wizard A Windows Server 2003 and 2008 tool used for delegating permissions over Active Directory objects. See also delegation.

demotion The process of downgrading a Windows Server 2008 domain controller to a member server.

differential backup A backup type that copies only the files that have been changed since the last normal (full) backup or incremental backup. A differential backup backs up only those files that have changed since the last full backup, but it does not set the archive bit.

Directory Services Restore mode (DSRM) A special boot mode for Windows Server 2008 domain controllers. The Directory Services Restore mode is used to boot a domain controller without starting Active Directory services. This enables systems administrators to log on locally to restore or to troubleshoot any problems with the Active Directory.

distinguished name The fully qualified name of an object within a hierarchical system. Distinguished names are used for all Active Directory objects and in the Domain Name System (DNS). No two objects in these systems should have the same distinguished name.

Distribution group Collection of Active Directory users used primarily for email distribution. Distribution groups do not have security identifiers (SIDs).

DNS client Any machine issuing queries to a DNS server. The client hostname may or may not be registered in a domain name system (DNS) database.

DNS name server Any computer providing domain name resolution services.
DNS Notify A mechanism that allows the process of initiating notifications to secondary servers when zone changes occur (RFC 1996).

DNS zone A portion of the DNS namespace over which a specific DNS server has authority.

domain In Microsoft networks, an arrangement of client and server computers referenced by a specific name that shares a single security permissions database. On the Internet, a domain is a named collection of hosts and subdomains, registered with a unique name by the InterNIC.

domain controller A Windows Server 2008 computer that includes a copy of the Active Directory data store. Domain controllers contain the security information required to perform services related to the Active Directory.

Domain Local group An Active Directory security or distribution group that can contain Universal groups, Global groups, or accounts from anywhere within an Active Directory forest.

Domain Name System (DNS) The TCP/IP network service that translates textual Internet network addresses into numerical Internet network addresses.

Domain Naming Master The Active Directory domain controller responsible for adding and removing domains within the Active Directory environment.

domain trees A set of Active Directory domains that share a common namespace and are connected by a transitive two-way trust. Resources can be shared between the domains in an Active Directory tree.

dual-boot A computer system that can have multiple operating systems loaded. Only one operating system can run at any given time, but dual-booting allows you to choose at startup which operating system you would like to start.

dynamic In computer terms, a system or application that builds its own records.

Dynamic DNS standard (DDNS) A standard that allows clients or DHCP to register with DNS automatically. This means that DNS can build its zone database on the fly.

Dynamic Host Configuration Protocol (DHCP) A protocol that automatically assigns TCP/IP addresses to DHCP clients.

E

elevation-of-privileges attack An attack against a domain controller in a trusted domain, accomplished through an external trust. The hacker uses the security identifier (SID) history attribute to associate SIDs with new user accounts, granting themselves unauthorized rights.

Event Viewer A Windows Server 2008 utility that tracks information about the computer’s hardware and software, as well as security events. This information is stored in three log files: the Application log, the Security log, and the System log.
external trust A way to provide access to resources on a Windows NT 4 domain or forest that cannot use a forest trust.

F

File Allocation Table (FAT) A filesystem, created by Microsoft, that was used for MS-DOS and Microsoft Windows up to and including Windows Me, and also by virtually all other existing personal computer operating systems, floppy disks, and solid-state memory cards. The FAT filesystem (sometimes known as FAT16) is a standard for mass-storage compatibility. Windows Server 2008 does not support FAT because it has fewer fault-tolerance features than the NTFS filesystem and can become corrupted through normal use over time.

file extension The three-letter suffix that follows the name of a standard filesystem file. Using Group Policy and software management functionality, systems administration can specify which applications are associated with which file extensions.

filtering The process by which permissions on security groups are used to identify which Active Directory objects are affected by Group Policy settings. Using filtering, systems administrators can maintain a fine level of control over Group Policy settings.

folder redirection A Group Policy setting that automatically redirects special folders (such as My Documents) to an alternate network location. Mobile users find folder redirection useful because their documents are always available in the same location.

foreign security principal Active Directory object used to give permissions to other security principals that do not exist within an Active Directory domain. Generally, foreign security principals are automatically created by the services of the Active Directory.

forest A collection of Windows 2008 domains in a trust relationship that does not necessarily share a common namespace. All of the domains within a forest share a common schema and Global Catalog, and domains can share resources in a forest.

G

Global Catalog (GC) A portion of the Active Directory that contains a subset of information about all of the objects within all domains of the Active Directory data store. The Global Catalog is used to improve performance of authentications and for sharing information between domains.

Global group An Active Directory security group that contains accounts only from its own domain.

gpresult.exe A command-line interface for RSoP. See also Resultant Set of Policy (RSoP).
Group object Logical collection of users that is used primarily for assigning security permissions to resources.

Group Policy Settings that can affect the behavior of, and the functionality available to, users and computers. Group policies allow system administrators to customize end user settings and to place restrictions on the types of actions that users can perform. Group policies can be applied to one or more users or computers within the Active Directory environment. See also **Group Policy object (GPO)**.

Group Policy object (GPO) A collection of settings (group policies) that control the behavior of users and computers. GPOs act as containers for the settings made within Group Policy files; this simplifies the management of settings. See also **Group Policy**.

Hash algorithm An algorithm that produces a hash value of some piece of data, such as a message or session key. If you use a well-designed hash algorithm, when input data changes are made, the resulting hash value can alter. Hash values are useful in detecting modifications to data. A well-designed hash algorithm makes it almost impossible for two independent inputs that have the same hash value.

Host record A record that is used to statically associate a host’s name to its IP addresses. Also called an A record for TCP/IP v4 and AAAA record for TCP/IP v6.

Incremental backup A backup type that backs up only the files that have changed since the last normal or incremental backup. It sets the archive attribute on the files that are backed up.

InetOrgPerson object An Active Directory object that defines attributes of users in Lightweight Directory Access Protocol (LDAP) and X.500 directories.

Infrastructure Master The Windows Server 2008 domain controller that is responsible for managing group memberships and transferring this information to other domain controllers within the Active Directory environment.

Inheritance The process by which settings and properties defined on a parent object implicitly apply to a child object.

Initialization file A file used to specify parameters that are used by an application or a utility. Setup programs often use initialization files to determine application installation information.

Internet Protocol (IP) The Network layer protocol upon which the Internet is based. IP provides a simple connectionless packet exchange. Other protocols such as TCP use IP to perform their connection-oriented (or guaranteed delivery) services.
intersite replication The transfer of information between domain controllers that reside in different Active Directory sites.

intrasite replication The transfer of information between domain controllers that reside within the same Active Directory site.

K

key recovery agent A user or administrator who has the right to revoke certificates from users or computers.

L

Lightweight Directory Access Protocol (LDAP) A protocol used for querying and modifying information stored within directory services. The Active Directory can be queried and modified through the use of LDAP-compatible tools.

linked value replication A Windows Server 2003 and 2008 feature that only replicates the part of the Active Directory that changed since the last replication cycle.

load balancing A method of distributing network load among multiple network hosts.

local area network (LAN) A network of well-connected computers that usually reside within a single geographic location (such as an office building). An organization typically owns all of the hardware that makes up its LAN.

Logging mode An RSoP mode that pulls policy information from a log based on actual logon activity. Logging mode displays the actual settings that apply to users and computers. See also Planning mode and Resultant Set of Policy (RSoP).

M

MSMQ Queue Alias object Active Directory object for the MSMQ-Custom-Recipient class type. This object associates an Active Directory path and a user-defined alias with a public, private, or direct single-element format name, allowing a queue alias to be used to reference a queue that might not be listed in Active Directory Domain Services (AD DS).
name server A server that can give an authoritative answer to name resolution queries about that domain.

name server (NS) record This record lists the name servers for a domain and allows other name servers to look up names in your domain.

Network Monitor A Windows Server 2008 utility that can be used to monitor and decode packets that are transferred to and from the local server.

Non-Dynamic DNS (NDDNS) A DNS database that needs to be built manually. Clients cannot automatically update the DNS server.

Normal backup A backup type that backs up all selected folders and files and then marks each file that has been backed up as archived.

Nslookup Command line utility for testing a DNS server.

objects Units stored within Active Directory.

operations master A special domain controller that is solely responsible for specific parts of the Active Directory, such as the schema, domain naming, or relative ID (RID).

organizational unit (OU) Used to logically organize the Active Directory objects (such as similar accounts or machines) within a domain. An OU is the smallest component within a domain to which administrative permissions and group policies can be assigned. OUs serve as containers within which other Active Directory objects can be created, but they do not form part of the DNS namespace.

packet sniffer A utility that allows an individual to watch or retrieve packets from a network cable.

partial attribute set (PAS) A subset of an object’s attributes that is stored in the Global Catalog (GC) to reduce replication traffic. The PAS can be changed by modifying the schema and marking attributes for replication to the GC.
password replication policy A policy that allows an administrator to determine which user groups will be allowed to use the read-only domain controller (RODC) credential caching.

patch A Windows Installer file that updates application code. Patches can be used to make sure that new features are installed after an application has already completed installation. A patch file does not remove any installed components.

PDC Emulator Master Within a domain, the PDC Emulator Master is responsible for maintaining backward compatibility with Windows NT domain controllers. When running in mixed-mode domains, the PDC Emulator is able to process authentication requests and serve as a primary domain controller (PDC) with Windows NT backup domain controllers (BDCs).

permissions Security constructs used to regulate access to resources by username or group affiliation. Administrators can assign permissions to allow any level of access (such as read-only, read/write, or delete) by controlling the ability of users to initiate object services. Security is implemented by the system checking the user’s security identifier (SID) against each object’s access control list (ACL).

Planning mode An RSoP mode that is used to plan Group Policy changes before putting them into effect. See also Logging mode, Resultant Set of Policy (RSoP).

pointer (PTR) record Used to associate an IP address to its host’s name. This record is necessary because IP addresses begin with the least-specific portion first (the network) and end with the most-specific portion (the host); whereas hostnames begin with the most specific portion at the beginning and the least specific at the end.

Primary Domain Controller (PDC) Emulator Master A special domain controller responsible for maintaining backward compatibility with Windows NT domain controllers.

primary zone This zone is responsible for maintaining all of the records for the DNS zone. It contains the primary copy of the DNS database and all record updates occur here. You create a new primary zone whenever you create a new DNS domain.

Printer object Active Directory object that identifies printers that are published within domains.

promotion The act of converting a Windows Server 2008, 2003, or 2000 Server computer to a domain controller. See also Active Directory Installation Wizard (DCPROMO).

public-key infrastructure (PKI) A structure that binds public keys with respective user identities through the use of a certificate authority.

publishing One of two processes by which applications are made available to computers and/or users. Publishing makes applications available for use by users through Group Policy and Software Installation settings. End users can install published applications on demand or when they need them by using the Add Or Remove Programs item in the Control Panel. See also assigning.
read-only domain controller (RODC) A domain controller containing a read-only full copy of an Active Directory database. The Active Directory database on a RODC cannot be altered. A RODC is used in an area or location that has limited security and is new in Windows Server 2008.

realm trust A way to connect to a non-Windows domain that uses Kerberos authentication. Realm trusts can be transitive or nontransitive, one-way or two-way.

relative distinguished name (RDN) Also referred to as the common name. This name specifies only part of the object’s path relative to another object. For example, if a username is wpanek@stellacon.com, wpanek is the RDN.

Reliability and Performance Monitor A Windows Server 2008 utility used to log and view performance-related data. The Reliability and Performance Monitor includes chart, histogram, and report views.

Remote Procedure Call (RPC) protocol A protocol used to allow communications between system processes on remote computers. Active Directory uses the RPC protocol for intrasite replication. See also intrasite replication.

replication The transfer of information between domain controllers. Replication allows a database to be distributed among many different servers in a network environment.

resolver Any machine issuing queries to a DNS server is called a resolver, although technically a resolver is a software process that finds answers to queries for DNS data. Clients issue DNS requests through processes called resolvers.

resource record (RR) An entry in a DNS database that specifies the availability of specific DNS services. For example, an MX record specifies the IP address of a mail server, and (A) host records specify the IP addresses of workstations on the network.

Resultant Set of Policy (RSoP) A Windows Server 2008 tool that automatically calculates the actual policy for a user or group based on site, domain, and OU placement, as well as inheritance settings.

RID Master The domain controller that is responsible for generating unique identifiers for each of the domains within an Active Directory environment.

root domain By default, the root domain is the first domain created in an Active Directory forest.
scavenging The DNS process of cleaning up old resource records in the DNS database. Scavenging uses the resource record timestamp to determine if the record is stale.

schema The organizational structure of a database. The Active Directory schema defines the attributes, objects, and classes available in Active Directory.

Schema Master A Windows Server 2008 domain controller that is responsible for maintaining the master copy of the Active Directory schema. There is only one Schema Master per Active Directory forest.

script policy A setting within Group Policy objects that specifies login, logoff, startup, and shutdown script settings. You can create the scripts by using the Windows Script Host (WSH) or by using standard batch file commands.

secondary DNS zone Noneditable copy of the DNS database that is used for load balancing (also referred to as load sharing). A secondary zone gets its database from the primary zone and provides for fault tolerance and increased network performance, especially in organizations with WAN connections.

Security Configuration And Analysis utility A Windows Server 2008 utility used for creating security profiles and managing security settings across multiple machines.

security group Active Directory object that can contain users or other groups and that are used for the management and assignment of permissions. Users are placed into security groups, and then permissions are granted to these groups. Security groups are considered to be security principals. See also security principal.

security identifier (SID) A unique number given to Active Directory objects (such as users, computers, and groups) to identify those object within Active Directory.

security principal An Active Directory object that is used to assign and maintain security settings. The primary security principals are Users, Groups, and Computers.

security template File used by the Security Configuration And Analysis tool for defining and enforcing security settings across multiple computers.

Server Manager A Microsoft Management Console (MMC) snap-in that allows an administrator to install and administer server roles, view information about server configuration, and keep track of the status of installed roles.

service (SRV) record Ties the location of a service (like a domain controller) with information about how to contact the service.

Shared Folder object Active Directory object that specifies the name and location of specific shared resources that are available to users of the Active Directory. Often, Shared Folder objects are used to give logical names to specific file collections. For example, systems administrators might create separate shared folders for common applications, user data, and shared public files.
shortcut trust A direct trust between two domains that implicitly trust each other.

Simple Mail Transfer Protocol (SMTP) A TCP/IP-based protocol that is primarily used for the exchange of Internet email. Active Directory can also use SMTP to manage intersite replication between domain controllers. See also intersite replication.

single master operations Specific functions that must be managed within an Active Directory environment but are only handled by specific domain controllers. Some single master operations are unique to each domain, and some are unique to the entire Active Directory forest.

single sign-on (SSO) A way of accessing applications or servers without needing a secondary password. Active Directory Federation Services offers this feature.

site A collection of well-connected TCP/IP subnets. Sites are used to define the topology of Active Directory replication.

site link A link between two or more Active Directory sites. See also site.

site link bridge A connection between two or more Active Directory site links. A site link bridge can be used to create a transitive relationship for replication between sites. See also site and site link.

smart card A credit-card-sized card with embedded integrated circuits that can process information. A smart card can be used to implement two-factor authentication: The card stores user certificate information and is used with a PIN as an alternative to the standard username and password logon process.

subdomain A lower level domain. Normally a child domain off of a parent domain.

subnet A collection of TCP/IP addresses that define a particular network location. All of the computers within a subnet share the same group of TCP/IP addresses and have the same subnet mask.

System State data Information used to manage the configuration of a Windows Server 2008 operating system. For Windows Server 2008 domain controllers, the System State data includes a copy of the Active Directory data store.

T

Task Manager A Windows Server 2008 utility that can be used to quickly and easily obtain a snapshot of current system performance.

transitive trust A trust relationship that allows for implicit trusts between domains. For example, if Domain A trusts Domain B and Domain B trusts Domain C, then Domain A implicitly trusts Domain C.
tree A set of Active Directory domains that share a common namespace and are connected by a transitive two-way trust. Resources can be shared between the domains in an Active Directory tree.

trust A relationship between domains that allows users who are contained within one domain to be granted access to resources in other domains.

two-way trust A relationship between domains in which two domains trust each other equally.

U

unidirectional replication One-way replication. Replication travels in one direction only.

Universal group An Active Directory security or distribution group that can contain members from, and be accessed from, any domain within an Active Directory forest. A domain must be running in native mode to use Universal groups.

User account See user object.

User object Active Directory object that is a security principal and that identifies individuals that can log on to a domain. User accounts contain information about individuals, as well as password and other permission information.

W

Web enrollment A method of receiving a certificate. Allows users to use a web browser to request a certificate from a certificate server.

wide area network (WAN) A distributed network, typically connected through slow, and sometimes unreliable, links. The various sites that make up a WAN are typically connected through leased lines.

Windows Installer A Windows service that provides for the automatic installation of applications through the use of compatible installation scripts.

Windows Installer package Special files that include the information necessary to install Windows-based applications.

Windows Internet Name Service (WINS) A service that resolves a NetBIOS name to a TCP/IP address. WINS is used primarily in older operating systems (95, 98, and NT).

Windows Script Host (WSH) A utility for running scripts on Windows-based computers. By default, WSH includes support for the VBScript and JScript languages. Through the use of third-party extensions, scripts can be written in other languages.
Index

Note to the reader: Throughout this index boldfaced page numbers indicate primary discussions of a topic. *Italicized* page numbers indicate illustrations.

Symbols

% Net Utilization counter, 489
% Processor Time counter, 489
% Usage counter, 489
* (asterisk), as nslookup wildcard character, 89
.admx file extension, 354

domains, 13–15. See also domains
exam essentials, 34
installing, 119
exam essentials, 137–138
verifying, 124–129
integrating DNS with, 135–137
linking existing GPOs to, 364–365
logical structure, 11–17
monitoring and troubleshooting, 487–503
domain controller performance, 488–490
replication, 226–230
organization, 314–315
Performance Monitor for, 490–496
queries, 336–338
replication, 200–201, 536
restoring, 515–525
testing from clients, 128
Active Directory Administrative Tools, 126–127, 127
Active Directory Application Mode (ADAM), 118
Active Directory Certificate Services (ADCS), 24–25, 30, 246–265
installing, 247–255
Active Directory data store, 11
Active Directory Domain Services (ADDS), 25–26, 30, 266–268
security features
BitLocker Drive Encryption, 267, 267
read-only domain controllers, 25, 68, 266, 267

A

A (host) record, 46, 71, 541
AAAA (host) record, 46, 71, 541
access control entries (ACEs), 23, 302, 430
access control list (ACL), 23, 302, 430
access restrictions, 281
Account Lockout Threshold setting, 440
Account LockoutDuration setting, 440
account logon events, auditing, 457
account management, auditing, 457
Account Operators group, 425
accounts database, 4
Accounts: RenameAdministrator Account setting, 440
ACEs (access control entries), 23, 302, 430
ACL (access control list), 23, 302, 430
Active Directory backups, 503–515
reasons for, 503–504
benefits, 7–10
distributed environment, 225
Windows Server 2008 new features, 266
Active Directory Domains and Trusts tool, 126
for assigning single-master operations, 173–174
for forest-wide role configuration, 171–172
for managing trust relationships, 177–181
configuring, 273
installing, 269–272
Active Directory forest, 15–17, 17. See also forests
Active Directory Installation Wizard (DCPROMO), 536
for creating forests and trees, 155–156
for demoting domain controller, 169, 169
for joining tree to forest, 163–167
for promoting domain controller, 119–123
Active Directory Integrated DNS, 60–62
Active Directory Integrated DNS zone, 536
Active Directory Lightweight Directory Services (AD LDS), 27, 273–280
configuring, 275–280
installing, 273–275
Active Directory Metadirectory Service (AD MDS), 281
Active Directory Migration Tool (ADMT), 300, 320–321
Active Directory objects, 8, 314, 315–321
enabling auditing, 457–458
exam essentials, 339
Group Policy settings for, 354
importing from file, 320
moving, renaming and deleting, 328–329
names and identifiers, 17–19
distinguished names, 18
GUIDs and SIDs, 18
hierarchy and, 14
permissions, 430
properties, 321–324
publishing, 330–338
security features, 21–22
Active Directory Rights Management Services (AD RMS), 27–28, 31, 281–287
administrative roles, 281
installing, 282–287
Active Directory Service Interfaces (ADSI), 8, 129
Active Directory Sites and Services tool, 126
for creating site links and site link bridges, 218–221
for creating sites, 207–209
for creating subnets, 210–212
for managing Global Catalog servers, 183–184
for managing universal group membership caching, 185
for site configuration, 212–214
for verifying topology, 230
Active Directory Users and Computers tool, 126, 127, 303
Advanced Options, 326, 327
for creating Active Directory objects, 316–320
for creating group, 326
for creating OU structure, 304–306
for delegating control of OUs, 310–311
filtering, 326
ForeignSecurityPrincipals folder, 428
for managing properties, 322–324
for modifying OU properties, 308
for smart card logon requirement, 447
AD CS. See Active Directory Certificate Services (AD CS)
AD DS. See Active Directory Domain Services (AD DS)
AD FS. See Active Directory Federation Services (AD FS)
AD LDS. See Active Directory Lightweight Directory Services (AD LDS)
AD RMS. See Active Directory Rights Management Services (AD RMS)
ADAM (Active Directory Application Mode), 118
adaptive format exam, xxiii
Add Features Wizard, 267
Add or Remove Programs, 389, 536
Add Or Remove Snap-Ins dialog box, 359
Add Printer Wizard, 331–334
Add Roles Wizard
to install AD FS, 270–272
to install AD LDS, 274–275
administration
benefits from Active Directory, 9–10
delegation of control, 22–23. See also delegation, of administrative control
administrative templates, 353, 354, 536
Administrator account, 426
security for, 460, 461
administrator rights, to manage certificate server, 263
administrator role separation, 267
Administrators group, 425
ADMT. See Active Directory Migration Tool (ADMT)
ADMX Central Store, 354
adprep.exe tool, 162
ADSI (Active Directory Services Interface), 8, 129
advertising, Windows Installer support for, 387
alias records, 71–72
anonymous access, Guest account for, 426
application assignment scripts, 388, 536
application data partitions, 536
creating, 129–132
ntdsutil utility to manage, 133–134
Application log, 125
applications. See software
Architect Series of certifications, xxi
Archive attribute of files, 505, 505
ARPAnet, 47
assigning applications, 389,
391–394, 536
asterisk (*), as nslookup wildcard character, 89
attributes, 12
au domain, 48
auditing, 26, 301, 536
categories, 456–457
overview, 456
policy implementation, 455–459
viewing information, 459
in Windows Server 2008, 266
authentication
smart card, 443–447
certificate enrollment station preparation, 444–445
Group Policy settings for,
446–447
writing certificate information on card, 446
strong, 30–31
verifying, 230
authentication store, configuring, 275
authoritative restore, 516–522, 536
autoenrollment, 256
 configuring, 257
automated installation of software, 387
Available MB counter, 488
Avg. Disk Queue Length counter, 489
AXFR (full zone transfers), 63

B
background zone loading, 62, 67, 537
Backup Domain Controller (BDC), 3
Backup Operators group, 425
backups, 474, 503–515
 of Active Directory, 509–515
 of certificate authority server, 263–265
 of Group Policy objects (GPOs), 509
 reasons for, 503–504
 scheduling, 508
 of System State data, 507–508
types, 505–506
bandwidth, 6, 199
 problems from limited, 184–185
BDC (Backup Domain Controller), 3
Berkeley Internet Name Domain (BIND), 51
bidirectional trusts, 175
BIND (Berkeley Internet Name Domain), 51
BitLocker Drive Encryption, 267, 267
Block Policy Inheritance, 357, 373
boot files, backups, 507
bottlenecks, 6, 537
bridgehead server Properties dialog box, 224
bridgehead servers, 204, 204, 537
 creating, 223–224
 replication with, 224
browsing network, 114
Built-In container, 314
Bytes Total/Sec counter
 for network interface, 488
 for server, 489
 for Web Service, 490

ca domain, 48
cache.dns files, locating on Internet, 76
caching
 by name servers, 56
 universal group membership, 184–185, 422
caching-only server, configuring, 75–76
canonical name (CNAME) record, 71–72
case study-based questions on exam, xxvi
categories of software, creating, 399
CD with book, xxviii–xxx
CDP (CRL distribution point), 261
Central Store, 354
Cert Publishers group, 247, 427
certificate authorities (CAs), 378
 for smart card, 443
Certificate Authority MMC snap-in,
 261–262
 backup of server, 263–265
 configuring additional settings, 263
certificate publishers, 378
certificate revocation, 537
certificate revocation list (CRL), 261, 537
Certificate Service DCOM Access
group, 425
Certificate Snap-in dialog box, 445
certificate templates, 247, 378
certificates
 enrolling, 255–260
 automatically in Group Policy,
 377–380
certification authorities – data store

Internet Explorer for requesting, 258–260
revoking, 261–262
for strong authentication, 30
validating status, 25
certification authorities (CAs), 25, 30
configuring, 248
Certification practice statement (CPS), 247
Chart (Graph) view in Performance
Monitor, 480, 480, 503
child containers, 23
child domains, 152, 153
creating, 156–161
Chkdsk.exe utility, 110
circular logging, 486
claim mapping, 273
classes in schema, 12
clients, 537
configuration management, 10
service requests, 202
testing Active Directory from, 128
testing connectivity to server, 113, 128
CNAME (canonical name) record, 71–72
COM+ Class Registration database,
backups, 507
com domain, 48
common name, in distinguished name, 18
compact to command (ntdsutil), 523
computer accounts
resetting existing, 329
as security principals, 419–420
computer certificates, enrolling,
255–260
automatically in Group Policy,
377–380
Computer Management, 111
Computer objects, 21, 315, 537
Group Policy settings for, 354
properties, 321–322
settings, 322–324
Computers container, 315
cfg.pol file, 353
Connection command (ntdsutil), 133
Connection objects, 537
creating, 222, 222
connectors, 537
in ILM, 33
consistency, in performance
measurement, 476–477
constraints, of networks, 199–200
Contact objects, 315, 537
CONVERT command, 110
copy backups, 506, 537
corrupted applications, Windows Installer
support for repairing, 386
cost value, assigning to site link, 217–218
costs, in network design, 199–200
counter logs, 486, 538
counters, 479
CPU performance information, Task
Manager for viewing, 499, 499
Create NC ... command (ntdsutil), 133
CRL (certificate revocation list), 261
CRL distribution point (CDP), 261, 538
cross-forest trusts, 176, 538
CryptoAPI (Microsoft Cryptography
application programming interface), 248
cryptographic keys, impact of removing
last domain controller, 170
Cryptographic Operators group, 425
cryptographic service provider (CSP), 248
csvde.exe file, 320
custom claim, 273
daily backups, 506, 538
data store, 11
centralized, 8
database – domain component

database
 for AD RMS, 283
 relational, 11
database mounting tool (Dsamain.exe), 26, 266
database zones in DNS, 57–66
 Active Directory Integrated DNS, 60–62
 configuring for dynamic updates, 80
 delegating, 81–82
 primary zones, 58–59
 secondary zones, 59–60
 stub zones, 62–63
 transfers
 or replication, 63–66
 troubleshooting, 90
DCPROMO. See Active Directory
 Installation Wizard (DCPROMO)
default accounts, and security, 460
default trusts, in forests, 175
defaults, for software package install, 397–398
delegation, 10, 538
 of administrative control, 22–23
 for custom tasks, 311–313
 for GPOs, 370–372
 for OUs, 301–302, 309–313
 for users and groups, 437–439
 real-world scenario, 313, 373
 zones for DNS, 81–82
Delegation of Control Wizard, 310–313, 538
Delete NC ... command (ntdsutil), 133
deleting
 accounts, vs. disabling, 324
 Active Directory objects, 328–329
 organizational units (OUs), 307–308
demotion, 538
 of domain controller, 132, 168–171
deprovisioning, 324
differential backup, 506, 538
digital certificates, 246
Directory Service event log, 125, 228, 229, 501
directory services, 2
 auditing access, 457
 model, 9
Directory Services Restore mode (DSRM), 508–509, 538
directory, term defined, 7–8
disabling accounts, vs. deleting, 324
Disaster Recovery Plan (DRP), 167
Disk Management, 111
disk quotas, 109
Disk Reads/Sec Disk Writes/Sec counter, 489
distinguished names (DN), 18, 538
Distributed File System (DFS),
 configuring, 326
distribution groups, 21, 325, 419, 421, 538
DLLs (dynamic link libraries), 386
DNS. See Domain Name System (DNS)
 DNS client, 51, 538
 DNS name server, 50–51, 538
 DNS Notify, 64, 539
 “DNS request timed out....” error message, 90
 DNS server log, 125
 DNS server Properties dialog box, Root Hints tab, 76
 DNS zone, 50, 539
 DNSLint, 92–93
 Domain Administrator account, multiple domains and, 149
 Domain Admins group, 427
 domain component, in distinguished name, 18
Domain Computers group, 427
Domain Controller: Allow Server Operators To Schedule Tasks setting, 440
Domain Controllers container, 315
domain controllers (DC), 3, 539
adding multiple, 167–168
backups, 507
configuring to host Global Catalog copy, 183
demotion, 132, 168–171
monitoring performance, 488–490
placement in Active Directory environment, 225
planning for placement, 168–169
promoting, 119–123
and tree creation, 155–156
read-only, 25
removing last in domain, 170–171
security for, 460
Domain Controllers group, 427
domain functional level, 115–116
domain groups and users, 420
Domain Guests group, 427
domain local groups, 325, 422, 539
built-in, 424, 424–426
domain management command (ntdsutil), 133
Domain Name System (DNS), 8, 44, 539
database zones, 57–66
Active Directory Integrated DNS, 60–62
primary zones, 58–59
secondary zones, 59–60
stub zones, 62–63
transfers and replication, 63–66
exam essentials, 95–96
as hierarchically distributed database, 47, 49
installing, 74–75
integrating Active Directory with, 135–137
loading on RODC, 267
monitoring, with DNS snap-in, 85–87
process, 51–56
dynamic population of database, 53–54
dynamic vs. non-dynamic, 51–53
queries, 54–56
record types, 68–74
alias records, 71–72
host (A or AAAA) record, 71
mail exchanger (MX) records, 72–73
name server (NS) records, 70–71
pointer (PTR) records, 72
service (SRV) records, 73–74
start of authority (SOA) records, 69–70
testing, 86–87
troubleshooting, 87–88
with DNS log file, 94–95
with DNSLint, 92–93
with Ipconfig, 93–94
with Nslookup, 88–92
Windows Server 2008 new features, 67–68
background zone loading, 67
GlobalName zones, 68
IPv6 address support, 67–68
read-only domain controllers support, 68
domain namespace, 47
Domain Naming Master, 172, 539
domain operations masters, 172
troubleshooting, 173
domain trees, 539. See also trees
Domain Users group, 427
domainprep process, 162
domains, 3, 539. See also forests; trees
in Active Directory, overview, 13–15
exam essentials, 186–187
GPOs for, 356
joining client to, 128–129
managing multiple, 171–185
multiple
drawbacks of, 150–151
reasons for, 148–151
planning structure, 118
reasons for, 148–151
removing last controller in, 170–171
renaming, 117
and sites, 201, 202
dotted decimal notation, 45
Dsamain.exe (database mounting tool), 26, 266
dual-boot, 109, 539
dynamic, 539
dynamic DNS, vs. non-dynamic, 51–53
Dynamic DNS standard (DDNS), 539
Dynamic Host Configuration Protocol (DHCP), 52, 539
dynamic link libraries (DLLs), 386
dynamic volumes, 109

Enforce PasswordHistory setting, 440
Enforced option, 357
enrollment agents, 247
Enterprise Admins group, 427
Enterprise Root CAs, 25, 248
Error events, in Event Viewer,
501–502, 502
error messages, from Nslookup, 90–91
Ethernet, 198
Event Log event ID 1311, 206
Event Properties dialog box, 229,
502, 502
Event Viewer, 228, 229, 539
for auditing information, 459
Directory Service event log, 501
for performance monitoring,
500–503
to verify Active Directory install, 124,
124–125
Exam 70-640: Microsoft Windows Server 2008 Active Directory, main goal, 2
extensible schema, for Active Directory, 8
external trusts, 176, 540

E

edu domain, 48
elevation-of-privileges attack, 176, 539
emails, unauthorized opening and tracking, 32
Encrypting File System (EFS), AD CS support for, 247
encryption, 31, 109
for AD RMS, 284
impact of removing last domain controller, 170

F

FAT32 (File Allocation Table 32) filesystem, 109
converting to NTFS, 110
fault tolerance, 515
Active Directory Integrated DNS and, 61
additional domain controllers for, 167
local database and, 59
Federated Identities, 31
federated identity management, 117
File Allocation Table (FAT), 540
File Allocation Table 32 (FAT32) filesystem, 109
file extensions, 540
mappings, 399
File Replication Service (FRS) configuring, 326
log, 228
File Sharing dialog box, 335
file types, for Windows Installer, 387–388
files
 Archive attribute, 505, 505
 preventing conflicts, Windows Installer for, 387
filesystem, verifying, 108–112
Filter Options dialog box, 326, 327
filtering, 367, 540
Find Users, Contacts, and Groups dialog box, 336–337, 337
Firefox, 247
firewall
 and ping command, 114
 verifying configuration, 228
Flashcards for PCs and Handheld Devices (Sybex), xxix–xxx
folders
 offline, 382
 redirection, 380–382, 540
Force Policy Inheritance, 357
foreign security principals, 315, 428, 540
forest trusts, 117
forest-wide authentication, 176
forestprep process, 162
forests, 14, 154, 154–155, 540
 in Active Directory, 15–17, 17
 cross-forest trusts for resource sharing, 176
default trusts in, 175
exam essentials, 186–187
joining tree to, 162–167
operations masters, 171–172
planning, 151–155
 in Windows Server 2008, 116–118
forward lookup zone, configuring for dynamic updates, 80
FQDN (fully qualified domain name), 49, 150
full zone transfers (AXFR), 63

G
Global Catalog (GC), 12–13, 152, 155, 540
replication, 117
server management, 182–184
server placement, 225–226
Global groups, 5, 325, 422, 540
predefined, 427–428
globally unique identifiers (GUIDs), 18
GlobalName zones, 68
glue host (A) records, in stub zone databases, 62
gov domain, 48
GPMC. See Group Policy Management Console (GPMC)
gpresult.exe, 406–407, 540
Graph (Chart) view in Performance Monitor, 480, 480, 503
group accounts, 324–326
 creating, 326
 properties, 325
 for security administration, 21
 strategies for, 326
group claim, 273
Group objects, 315, 541
Group Policy, 541
 administrative templates, 353, 354, 536
 assigning script policies, 375–376
 basics, 352–357
configuring automatic updates, 396–397
exam essentials, 408–409
filtering, 373–374
implementing, 358–365
inheritance, 356–357
blocking, 373
controlling, 373–374
network configuration management, 376–377, 377
planning strategy, 357–358
redirecting folders, 380–382
for security, 439–443
applying policies, 441–443
security filtering of, 366–370
and security permissions, 14
troubleshooting, 402–407
user and computer certificate automatic enrollment, 377–380
Group Policy Creator Owners group, 427
Group Policy Management Console (GPMC), 353, 355, 358
creating GPO with, 359–363
viewing GPO links, 366
Group Policy objects (GPOs), 355–356, 541
backups, 509
creating, 358–364
with GPMC, 359–363
delivering administrative control, 370–372
linking to Active Directory, 364–365
managing, 365–366
software deployment, 383–389
groups
built-in domain local groups, 424, 424–426
creating, 432–435
delegating control, 437–439
Properties dialog box, 424
real-world scenario, 431
scope, 325, 421–423
for security administration, 21
as security principals, 419–420
types, 420–421
Guest account, 426
security for, 460
Guests group, 425
GUIDs (globally unique identifiers), 18

H
hackers, 176
hands-on experience, xxiii
hardware requirements, xxx
hash algorithm, 248, 541
help, for ntdsutil, 523
Help command (ntdsutil), 133
hexadecimal notation, 45
hidden shares, for application installation files, 390
hierarchy
for Active Directory, 8
and object naming, 14
of organization, multiple domains and, 150
Histogram view in Performance Monitor, 481, 481
host (A or AAAA) record, 71, 541
host names, resolving IP addresses to, 44, 46
HOSTS files, 46, 46, 47
HTML report, from DNSLint, 92
Hyper-V utility, 275
hypervisor, 275
ICANN (Internet Corporation for Assigned Names and Numbers), 49
icons, in Event Viewer, 501, 502
identifiers, of objects, 17–19
Identity and Access (IDA) solutions, 28–33
identity claim, 273
Identity Lifecycle Management (ILM), 32–33
identity management, AD MDS for, 281
importing objects from file, 320
in-addr.arpa domain, 56
incremental backup, 306, 541
incremental zone transfers (IXFR), 63
indexing information in Active Directory, Global Catalog for, 12
InetOrgPerson object, 316, 541
information protection, with AD RMS, 31
informational events, in Event Viewer, 501, 502
Infrastructure Master, 172, 541
inheritance, 541
controlling, 373–374
of Group Policy settings, 356–357
OUs, 300, 302, 314
settings, 23
initialization files, 388, 541
Installation Wizard, for AD DS, 25
installing
Active Directory, 119
verifying, 124–129
Active Directory Federation Services (AD FS), 269–272
Active Directory Lightweight Directory Services (AD LDS), 273–275
Active Directory Rights Management Services (AD RMS), 282–287
Domain Name System (DNS), 74–75
software
licenses for, 384
verifying, 396
instances, 479
of AD LDS, 276
int domain, 48
Interactive Logon: Do Not Display Last User Name setting, 441
Internet, 113, 199
browsing, 114
Internet Corporation for Assigned Names and Numbers (ICANN), 49
Internet Explorer, 247
for requesting certificate, 258–260
Internet Protocol (IP), 541
addresses, 199
form of, 45–50
resolving to host names, 44, 46
RPC over, 215
Internet service providers (ISPs), 199
intersite replication, 215–224, 542
configuring schedules, 216, 218
intrasite replication, 214, 215, 542
inverse queries, 56
ipconfig utility, 93–94, 113, 114
IPsec (IP security)
AD CS support for, 247
configuring policies, 326
IPv4 address, 45
IPv4 Properties dialog box, DNS tab, 54
IPv6 address, 45
Windows Server 2008 support, 67–68
item seeding, xxvi
iterative queries, 54
IXFR (incremental zone transfers), 63

JP
jp domain, 48
K
KCC. See Knowledge Consistency Checker (KCC)
Kerberos authentication, 426
 realm trusts for domain with, 176
Key archival, 263
Key Distribution Center Service account, 426
key recovery agent, 263, 542
Knowledge Consistency Checker (KCC), 132, 217
 errors, 6
krbtgt account, 426

L
LAN (local area network), 198–199, 542
 access, 113
LDAP (Lightweight Directory Access Protocol), 27, 273, 542
ldifde utility, 320
LDP tool, 129–130, 130
licenses for software, 384, 390
Lightweight Directory Access Protocol (LDAP), 27, 273, 542
line-delimited files, importing, 320
linear logging, 486
linked value replication, 117, 203, 542
List NC Information command (ntdsutil), 133
List NC Replicas command (ntdsutil), 134
load balancing, 542
 with round robin, 75
 secondary DNS zones for, 59
local area network. See LAN (local area network)
Local Computer Policy tool, 358
 local database, for primary DNS zone, 58–59
 local groups and users, 420
Local Security Policy, for configuring autoenrollment, 256, 257
log files
 for DNS server, 94–95
 Event Viewer to display, 125–126
 viewing previously saved data, 486
logging mode, 542
 for RSoP, 402, 403–405
logical structure of Active Directory data store, 11
 Global Catalog, 12–13
 replication, 13
 schema, 12
 searching mechanisms, 13
logon, GPOs impact on performance, 402
Logon/Logoff scripts, 375

M
mail exchanger (MX) records, 72–73
mandatory software upgrades, 395
mapping file extensions, 399
mapping network drives, with logon scripts, 375
MCA (Microsoft Certified Architect), xxi, xxii
MCITP (Microsoft Certified IT Professional), xxi
MCP (Microsoft Certified Professional), xxi–xxiii
MCPD (Microsoft Certified Professional Developer), xxi, xxii
MCTS (Microsoft Certified Technology Specialist), xxi
 exam requirements, xxii
negative cache TTL, 56
net domain, 48
network adapter, testing, 112
Network Device Enrollment Service (NDES), 25, 247
Network Monitor, 496, 543
network operating systems (NOSs), 301
Network Time Protocol (NTP), 172
networks
 browsing, 114
 constraints, 199–200
 managing configuration, 376–377, 377
 planning overview, 198–200
 Task Manager for viewing utilization, 499, 499
 traffic from DC synchronization, 5
types, 198–199
 verifying connectivity, 112–114, 228
New Object - Group dialog box, 422, 423
New Resource Record dialog box, 83, 84
New Technology File System (NTFS), 543. See also NTFS (New Technology File System)
New Zone Wizard
 for Active Directory Integrated DNS, 60
 for stub zones, 62
NO Override option, 357
nodes in DNS, 47
Non-Dynamic DNS (NDDNS), 543
 vs. dynamic, 51–53
nonauthoritative restore, 522
noncontiguous namespaces, forests
 for, 154
nonmandatory software upgrades, 395
normal backups, 506, 543
Notify dialog box, 64, 65
Nslookup, 88–92, 543
 on command line, 89
 exercise, 91–92
in interactive mode, 89–90
 responses and error messages, 90–91
ntconfig.pol file, 353
NTDS Settings Properties dialog box,
 General tab, 226
ntdsutil utility, 130, 135, 517
 offline maintenance with, 523
NTFS (New Technology File System), 109
 conversion, 112
 partition setup, 110–112
 self-healing, 110
NTFS (New Technology File System), 543
NTP (Network Time Protocol), 172

O
objects, 543. See also Active Directory objects
offline folders, 382
offsite storage of backup, 506
on-demand software installations, 387
one-way trust, 175
Online Certificate Status Protocol (OCSP), 261
Online Responder Service, 25, 247, 261
operations masters, 171, 543
 assigning single-master roles, 173–174
Optimize Backup Performance dialog box, 506, 507
optimizing performance, 474
org domain, 48
organization
 accommodating structure change, 227
 in distinguished name, 18
 mapping to OU structure, 299
Organizational Unit objects, 315
organizational units (OUs), 14, 19–20, 20,
 296–297, 543
 benefits, 298
creating, 303–306
enabling auditing, 458–459
exam essentials, 339
GPOs for, 356
group policies, 302–303
managing, 306–313
 administering properties, 308
delegating control, 309–313
 moving, deleting and renaming, 307–308
names for, 300
parent-child relationships, 23
planning structure, 298–303
 delegating administrative control, 301–302
geographically based, 303
inheritance, 300
mapping organization to OU structure, 299
parent-child relationships, 302
resource grouping, 298–300
Properties dialog box
 General tab, 309
 Managed By tab, 309
 “Protect container from accidental deletion” option, 329
 purpose of, 297–298
 relationships of users and groups to, 297
 and security, 420
troubleshooting, 314
OUs. See organizational units (OUs)
Outlook, 247
Outlook Express, 247

P

packet sniffer, 59, 543
Packets Received Errors counter, 488
Pages/Sec counter, 488
parent-child relationships, 23
partial attribute set (PAS), 183, 543
password replication policy, 267, 544
passwords
 for AD RMS encryption, 284
 for computer account, 329
fine-grained policies, 26, 266
managing multiple, 29
patches, 388, 544
PDC (Primary Domain Controller), 3
PDC Emulation Master, 172, 544
performance
 additional domain controllers for, 168
 backup schedule and, 508
 of domain controller, 488–490
 exam essentials, 526
 maintaining history, 477
 monitoring
 with Event Viewer, 500–503
 with Network Monitor, 496
 with Task Manager, 497–500
troubleshooting, 503
 for Windows Server 2008, 475–477
 of networks, costs and, 199–200
 optimization, 474
 statistics available for monitoring, 478–479
Performance Monitor, 478
 for Active Directory, 490–496
 adding new counter, 479
properties, 482–485
 Appearance tab, 485, 485
 Data tab, 484, 484
 General tab, 482, 483
 Graph tab, 484, 484
 Source tab, 483, 483
 real-world scenario, 486–487
 saving data for later analysis, 485–486
viewing information, 480–481
 Graph view, 480, 480, 503
 Histogram view, 481, 481, 503
 Report view, 481, 482
performance objects, 478
permissions, 419, 544
 of Active Directory objects, 430
 benefits of group-based, 431
 delegating, 10
 for foreign security principals, 428
 managing, 429–430
 for software install, 386, 401
PIN (personal identification number), 30
ping command, 113–114
PKI (public-key infrastructure), 246–247, 378, 544
 for smart card, 443
planning
 domain structure, 118
 forests, 151–155
 Group Policy strategy, 357–358
 importance of, 476
 networks, 198–200
 OU structure, 298–303
 delegating administrative control, 301–302
 geographically based, 303
 inheritance, 300
 mapping organization to OU structure, 299
 parent-child relationships, 302
 resource grouping, 298–300
 sites, 203–205
 trees, 151–155
 for single tree, 152–153
planning mode, 544
 for RSoP, 402
pointer (PTR) records, 56, 72, 544
Precreate command (ntdsutil), 134
Primary Domain Controller (PDC), 3
Primary Domain Controller (PDC) Emulator Master, 544
primary zones, 58–59, 544
Print Operators group, 425
Printer objects, 315, 544
 publishing, 330–334
private key, archiving, 263
processes, displaying list of currently running, 497–498, 498
Processes counter, 490
Processor Queue Length counter, 489
production environment, changes, 476
Professional Series of certifications, xxi
programs. See software
Prometric Testing Centers, xxvi
promoting domain controller, 119–123
promotion, 544
properties
 of Active Directory objects, 321–324
 settings, 322–324
 of group accounts, 325
PTR (pointer) records, 56
public key certificate services, 246
public-key infrastructure (PKI), 246–247, 378, 544
 for smart card, 443
publishing, 544
 of Active Directory objects, 330–338
 Printer objects, 330–334
 Shared Folder objects, 334–336
 applications, 389, 391–394
push/pull relationship, 64
queries
 of Active Directory, 336–338
 of DNS server, 51, 54–56, 55
questions on exam, xxiii–xxvi
 case study-based, xxvi
 multiple-choice, xxiv
 select-and-place, xxiv
 simulations, xxv

R
RAID (Redundant Array of Independent Disks), 109, 487
read-only domain controllers (RODC), 25, 68, 266, 267, 545
realm trusts, 176, 545
record types in DNS, 68–74
 alias records, 71–72
 host (A or AAAA) record, 71
 mail exchanger (MX) records, 72–73
 manually creating, 82–85
 name server (NS) records, 70–71
 pointer (PTR) records, 72
 query for specific type, 90
 service (SRV) records, 73–74
 start of authority (SOA) records, 69–70
 in stub zone databases, 62
recursive queries, 54–56
redirecting folders, 380–382
Redundant Array of Independent Disks (RAID), 109, 487
RegEdit command, 448
registration, of AD RMS server in Active Directory, 286
registration for exam, xxvi–xxvii
Registry
 administrative templates and, 353
 backups, 507
 relational database, 11
relative distinguished name (RDN), 18, 545
Relative ID (RID) Master, 172
Reliability and Performance Monitor, 477–478, 545
Remote Procedure Call (RPC) protocol, 215, 545
remote storage, 109–110
removable media, disabling for software install, 402
Remove NC Replica command (ntdsutil), 134
removing. See deleting; uninstalling software
rename command, 117
RepAdmin utility, 523–524
replicas, 132
replication, 9, 13, 132, 545
 of Active Directory, 200–201
 monitoring and troubleshooting, 226–230
 with bridgehead servers, 224
 communication problems and, 6
 configuring, 214–226
 exam essentials, 231–232
 monitoring, 523–525
 multimaster, 171, 203
 multiple domains for traffic reduction, 149
 problems from, 206
 sites for managing, 202–203
 unidirectional, 267
 verifying topology, 230, 230
Replication Monitor, 524
Replicator group, 425
replmon command, 524
Report view in Performance Monitor, 481, 482
“*** Request to Server time-out” error message, 90
Reset Account Lockout Counter After setting, 440
resolvers, 51, 56, 545
Resource Record Type dialog box, 84
resource records (RRs), 50, 57–58, 545.
See also record types in DNS
restartable Active Directory Domain
Services, 26
restore subtree command (ntdsutil), 522
restoring Active Directory, 515–525
authoritative, 516–522
nonauthoritative, 522
Resultant Set of Policy (RSoP), 402, 545
gpresult.exe, 406–407
logging mode, 402, 403–405
planning mode, 402, 406
reverse DNS records, 72
revoking certificates, 261–262
RID (Relative ID) Master, 172, 545
roaming user profiles, folder redirection
for, 380
RODC (read-only domain controllers), 25, 68, 266, 267, 545
rollback of software install, disabling, 401–402
root domain, 16, 152, 153, 545
root in DNS, 47
round robin, load balancing with, 75
routers
and ping command, 114
verifying configuration, 228
RPC (Remote Procedure Call) protocol, 215
RSoP (Resultant Set of Policy), 402
gpresult.exe, 406–407
logging mode, 402, 403–405
planning mode, 406
S
saving Performance Monitor data for later
analysis, 485–486
scalability
of Active Directory, 10
multiple domains for, 148
scavenging, 546
schedules
for backups, 508
for intersite replication, configuring, 216, 218
schema, 8, 11, 12, 155, 546
defunct classes and attributes, 117
Schema Admins group, 427
Schema Master, 171–172, 174, 546
scope of group, 325, 421–423
script policy, 546
assigning, 375–376
scripts, application assignment, 388, 536
search function, of Active Directory, 10
searching mechanisms, 13
secedit.exe command-line utility, 448,
452–454
switches, 453–454
secondary DNS servers
notification of zone changes, 64
zone transfer for, 63
secondary DNS zone, 546
secondary zones, 59–60
Secure/Multipurpose Internet Mail
Extensions (S/MIME), AD CS
support for, 247
Secure Socket Layer/Transport Layer
Security (SSL/TLS), AD CS support
for, 247
security, 418, 419–431
 Active Directory and, 10
 Active Directory Integrated DNS and, 61
dynamic DNS and, 52
 enforcing consistent policies, 454–455
 exam essentials, 462
 Group Policy for, 439–443
 implementing, 432–439
 local database and, 59
 managing, 429, 429–430
 objects and, 21–22
 for user accounts and passwords, 29
Security Configuration And Analysis utility, 448–452, 455, 546
 security filtering, of Group Policy, 366–370
security groups, 21, 325, 419, 421, 546
 security identifier (SID), 419, 546
 default filtering on external trusts, 176
 Security log, 125
 security permissions, Group Policy and, 14
 security principals, 315, 419–428, 546
 security templates, 354, 448, 546
 select-and-place questions on exam, xxiv
 Select Operation Target command (ntdsutil), 134
 selecting multiple user objects, 324
 selective authentication, 176
 enabling, 181
 self enrollment, 281
 self-healing NTFS, 110
 *** Server can’t find ...” error message, 90, 91
server licensor certificate (SLC), 281
 Server Manager, 23, 245, 246, 546
 to install AD CS, 248–255
 to install AD FS, 269–272
 to install AD LDS, 273–275
 to install AD RMS, 282–287
server objects, moving between sites, 223
 Server Operators group, 425
 server Properties dialog box
 Event Logging tab, 85, 85
 Monitoring tab, 86, 86
server roles in Windows Server 2008, 24
 Active Directory Certificate Services (AD CS), 24–25, 30, 246–265
 Active Directory Domain Services (AD DS), 25–26. See also Active Directory Domain Services (AD DS)
 Active Directory Lightweight Directory Services (AD LDS), 27, 273–280
 Active Directory Rights Management Services (AD RMS), 27–28, 31, 281–287
 exam essentials, 288
 Server Sessions counter, 489
server topology, 225–226
servers
 configuring caching-only, 75–76
 converting member to domain controller, 119
 for Global Catalog, placement, 225–226
 intermittent crashes, 474
 service instance, of AD LDS, 276
 Service Location Resource Records, 51
server requests, sites for managing, 202
service (SRV) records, 73–74, 546
services, displaying list of currently running, 498, 498
set command, for Nslookup command-line options, 89
Set DSRM Password command (ntdsutil), 523
Set NC Reference Domain command (ntdsutil), 134
Set NC Replicate NotificationDelay command (ntdsutil), 134
set type command, 90
Shared Folder objects, 315, 330, 546
publishing, 334–336
shortcut trusts, 176, 547
Shutdown: Allow System To Be Shut Down Without Having To Log On setting, 441
Shutdown scripts, viewing policy settings, 375
Simple Mail Transfer Protocol (SMTP), 215, 547
simulation questions on exam, xxv
single master operations, 547
single sign-on (SSO), 27, 31, 268, 547
site link bridges, 547
creating, 217–221
site links, 205, 547
creating, 217–221
sites, 198, 201–205, 547
configuring, 212–214
creating, 206–209
and domains, 201, 202
GPOs for, 356
implementing, 205–214
moving server objects between, 223
planning, 203–205
Sites and Services Microsoft Management Console, 203–204
smart card, 30, 547
AD CS support for logon with, 247
authentication, 443–447
certificate enrollment station preparation, 444–445
Group Policy settings for, 446–447
writing certificate information on card, 446
SMTP (Simple Mail Transfer Protocol), 215
software
applying updates, 394–395
creating categories, 399
deployment, 389
configuring settings, 397–402
preparation, 390–391
through GPO, 383–389
in Windows Vista, 389
displaying list of currently running, 497, 497
maintenance, 384
publishing, 389, 391–394
requirements, xxx
uninstalling, 384–385, 400–401
verifying installation, 396
Windows Installer, 385–388
benefits, 386–387
software distribution share point, creating, 390–391
Software Installation Properties dialog box, 397–399
Advanced tab, 398, 398
Categories tab, 399, 400
General tab, 397
software management life cycle, 383–385
Software Settings options, in Group Policies, 354
Software Update Services (SUS), 384
SSO (single sign-on), 27, 31, 268, 547
Stand Alone Root CAs, 25, 248
start of authority (SOA) records, 69–70
in stub zone databases, 62
startup, GPOs impact on performance, 402
Startup scripts, viewing policy settings, 375
strong authentication, 30–31
stub zones, 62–63
 configuring transfers with zone replication scope, 66
subdomains, 547
 creating, 156–161
subnets, 203, 547
 creating, 209–212
 implementing, 205–214
Subordinate CAs, 248
SupTools.msi file, 129–130
SUS (Software Update Services), 384
Sybex Flashcards for PCs and Handheld Devices, xxix–xxx
Sybex Test Engine, xxix
synchronization, verifying, 230
System folder, 326
System log, 125
System Monitor, 228–230
System Monitor Log Properties dialog box, 492
system policies, 353
system resources, for Active Directory, 487
System State data, 547
 backups of, 507–508
 restoring, 508–509, 517–522
SYSVOL directory, backups, 508

T

Task Manager, 497–500, 547
 Applications tab, 497, 497
 Networking tab, 499, 499
 Performance tab, 499, 499
 Processes tab, 497–498, 498
 Services tab, 498, 498
 Users tab, 500, 500
TCP/IP (Transmission Control Protocol/Internet Protocol), 44, 205
 addresses in subnet, 209
 verifying, 112
Technology Series of certifications, xxi
templates
 security, 354, 448, 546
 for user accounts, 435–436
test environment, 476
testing
 Active Directory, from clients, 128
 Domain Name System (DNS), 86–87
 network configuration, 113–114
Thawte, 378
time to live (TTL), 56
 choosing values, 57
top-level domains (TLDs), 47–48
transitive trust, 547
transitive trust relationships, 175
transitive two-way trust relationships, 15, 175
trees, 14, 16, 153, 548
 creating, 156
 exam essentials, 186–187
 joining to forest, 162–167
 planning, 151–155
 for single tree, 152–153
troubleshooting
 Active Directory replication, 226–230
 Domain Name System (DNS), 87–88
 with DNS log file, 94–95
 with DNSLint, 92–93
 with Ipconfig, 93–94
 with Nslookup, 88–92
 domain operations masters, 173
 exam essentials, 526
 Group Policy, 402–407
 performance monitoring, 503
 trust policies, for AD FS, 273
trust relationships, 15, 15, 548
Active Directory Domains and Trusts
tool for managing, 177–181
AD FS for setup, 268
Trustbridge, 117–118. See also Active
Directory Federation Services (AD FS)
trusts, managing, 175–181
TTL (time to live), 56
choosing values, 57
two-way trust, 175, 548
displaying list of currently active,
500, 500
lost by removing domain controller, 170
master domains for storing, 4
policies for administrative tasks, 32
as security principals, 419–420
user certificates, enrolling,
255–260
automatically in Group Policy,
377–380
User objects, 316, 548
Group Policy settings for, 354
properties, 321
settings, 322–324
selecting multiple, 324
user principal name (UPN) suffixes,
181–182
user rights, to manage certificate
server, 263
user templates, 435–436
Users container, 315
Users folder, default groups in Windows
Server 2008, 426, 426
Users group, 425
Variable Length Subnet Masking
(VSLM), 56
VeriSign, 378
Virtual Private Networks (VPNs), 199
AD CS support for, 247
WAN. See wide area networks (WAN)
Warning events, in Event Viewer,
501, 502
Web Agents, 273
Web browser, for requesting certificate, 258–260
Web enrollment, 25, 247, 548
web resources, for Microsoft Education and Certification materials, xxxi
wide area networks (WAN), 199, 548
links as bottleneck, 6
verifying access, 113
Windows 2000
domain database, 3
domain functional features, 115–116
Windows 2000 Mixed domain functional mode, limitations on group functionality, 423
Windows 2000 Native mode, possible group scope changes, 423
Windows 2003, domain database, 3
Windows Installer, 385–388, 548
benefits, 386–387
file types, 387–388
Windows Installer package, 548
Windows Internet Name Service (WINS), 51, 548
Windows NT 4 Domain Model, 3–5, 4
vs. hierarchical Active Directory domains, 19
limitations, 5–7
Windows Script Host (WSH), 375, 548
Windows Server 2003, domain functional features, 115–116
Windows Server 2008
advanced boot options, 517, 517
default groups in Users folder, 426, 426
domain database, 3
domain functional features, 115–116
filesystem support, 109
Identity and Access (IDA) solutions, 28–33
new DNS features, 67–68
background zone loading, 67
GlobalName zones, 68
IPv6 address support, 67–68
read-only domain controllers support, 68
performance monitoring, 475–477
performance tools, 477–485
Reliability and Performance Monitor, 477–478
promotion to domain controller, 155–156
security hacks for accounts, 460–461
server roles, 23–28, 24
Active Directory Certificate Services (AD CS), 24–25
Active Directory Domain Services (AD DS), 25–26
Active Directory Federation Services (AD FS), 26–27
Active Directory Lightweight Directory Services (AD LDS), 27
Active Directory Rights Management Services (AD RMS), 27–28
Windows Server 2008 Active Directory certification on, xxii
Configuring exam, xxii–xxiii
registration, xxvi–xxvii
tips for taking, xxvi
types of questions, xxiii–xxvi
Windows Server 2008 Backup utility, 504, 509–515
overview, 505–509
Windows Server Update Service (WSUS), 384, 396
Windows Settings options, in Group Policies, 354
Windows Time service, 172
Windows Update, 384, 396
Windows Vista, installing software, 389
WindowsITPro Magazine, xxxi
wireless networks, secure, AD CS support for, 247
WSH (Windows Script Host), 375, 548
WSUS (Windows Server Update Service), 384, 396

Z
zone Properties dialog box
 General tab, 66, 77
 Name Servers tab, 79, 79
 Start Of Authority tab, 77–78, 78
 WINS tab, 79
 Zone Transfers tab, 64, 65, 79–80
zone replication scope, 66
zones. See database zones in DNS
Wiley Publishing, Inc. End-User License Agreement

READ THIS. You should carefully read these terms and conditions before opening the software packet(s) included with this book “Book”. This is a license agreement “Agreement” between you and Wiley Publishing, Inc. “WPI”. By opening the accompanying software packet(s), you acknowledge that you have read and accept the following terms and conditions. If you do not agree and do not want to be bound by such terms and conditions, promptly return the Book and the unopened software packet(s) to the place you obtained them for a full refund.

1. License Grant. WPI grants to you (either an individual or entity) a nonexclusive license to use one copy of the enclosed software program(s) (collectively, the “Software,” solely for your own personal or business purposes on a single computer (whether a standard computer or a workstation component of a multi-user network). The Software is in use on a computer when it is loaded into temporary memory (RAM) or installed into permanent memory (hard disk, CD-ROM, or other storage device). WPI reserves all rights not expressly granted herein.

2. Ownership. WPI is the owner of all right, title, and interest, including copyright, in and to the compilation of the Software recorded on the physical packet included with this Book “Software Media”. Copyright to the individual programs recorded on the Software Media is owned by the author or other authorized copyright owner of each program. Ownership of the Software and all proprietary rights relating thereto remain with WPI and its licensors.

3. Restrictions On Use and Transfer.
 (a) You may only (i) make one copy of the Software for backup or archival purposes, or (ii) transfer the Software to a single hard disk, provided that you keep the original for backup or archival purposes. You may not (i) rent or lease the Software, (ii) copy or reproduce the Software through a LAN or other network system or through any computer subscriber system or bulletin-board system, or (iii) modify, adapt, or create derivative works based on the Software.
 (b) You may not reverse engineer, decompile, or disassemble the Software. You may transfer the Software and use documentation on a permanent basis, provided that the transferee agrees to accept the terms and conditions of this Agreement and you retain no copies. If the Software is an update or has been updated, any transfer must include the most recent update and all prior versions.

4. Restrictions on Use of Individual Programs. You must follow the individual requirements and restrictions detailed for each individual program in the About the CD-ROM appendix of this Book or on the Software Media. These limitations are also contained in the individual license agreements recorded on the Software Media. These limitations may include a requirement that after using the program for a specified period of time, the user must pay a registration fee or discontinue use. By opening the Software packet(s), you will be agreeing to abide by the licenses and restrictions for these individual programs that are detailed in the About the CD-ROM appendix and/or on the Software Media. None of the material on this Software Media or listed in this Book may ever be redistributed, in original or modified form, for commercial purposes.

5. Limited Warranty.
 (a) WPI warrants that the Software and Software Media are free from defects in materials and workmanship under normal use for a period of sixty (60) days from the date of purchase of this Book. If WPI receives notification within the warranty period of defects in materials or workmanship, WPI will replace the defective Software Media.
 (b) WPI AND THE AUTHOR(S) OF THE BOOK DISCLAIM ALL OTHER WARRANTIES, EXPRESS OR IMPLIED, INCLUDING WITHOUT LIMITATION IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE, WITH RESPECT TO THE SOFTWARE, THE PROGRAMS, THE SOURCE CODE CONTAINED THEREIN, AND/OR THE TECHNIQUES DESCRIBED IN THIS BOOK. WPI DOES NOT WARRANT THAT THE FUNCTIONS CONTAINED IN THE SOFTWARE WILL MEET YOUR REQUIREMENTS OR THAT THE OPERATION OF THE SOFTWARE WILL BE ERROR FREE.
 (c) This limited warranty gives you specific legal rights, and you may have other rights that vary from jurisdiction to jurisdiction.

6. Remedies.
 (a) WPI’s entire liability and your exclusive remedy for defects in materials and workmanship shall be limited to replacement of the Software Media, which may be returned to WPI with a copy of your receipt at the following address: Software Media Fulfillment Department, Attn.: CISA; Certified Information Systems Auditor Study Guide, Wiley Publishing, Inc., 10472 Crosspoint Blvd., Indianapolis, IN 46256, or call 1-800-762-2974. Please allow four to six weeks for delivery. This Limited Warranty is void if failure of the Software Media has resulted from accident, abuse, or misapplication. Any replacement Software Media will be warranted for the remainder of the original warranty period or thirty (30) days, whichever is longer.
 (b) In no event shall WPI or the author be liable for any damages whatsoever (including without limitation damages for loss of business profits, business interruption, loss of business information, or any other pecuniary loss) arising from the use of or inability to use the Book or the Software, even if WPI has been advised of the possibility of such damages.
 (c) Because some jurisdictions do not allow the exclusion or limitation of liability for consequential or incidental damages, the above limitation or exclusion may not apply to you.

7. U.S. Government Restricted Rights. Use, duplication, or disclosure of the Software for or on behalf of the United States of America, its agencies and/or instrumentalities “U.S. Government” is subject to restrictions as stated in paragraph (c)(1)(ii) of the Rights in Technical Data and Computer Software clause of DFARS 252.227-7013, or subparagraphs (c) (1) and (2) of the Commercial Computer Software - Restricted Rights clause at FAR 52.227-19, and in similar clauses in the NASA FAR supplement, as applicable.

8. General. This Agreement constitutes the entire understanding of the parties and revokes and supersedes all prior agreements, oral or written, between them and may not be modified or amended except in a writing signed by both parties hereto that specifically refers to this Agreement. This Agreement shall take precedence over any other documents that may be in conflict herewith. If any one or more provisions contained in this Agreement are held by any court or tribunal to be invalid, illegal, or otherwise unenforceable, each and every provision shall remain in full force and effect.
Use the Electronic Flashcards for PCs or Palm devices to jog your memory and prep last-minute for the exam!

- Reinforce your understanding of key concepts with these hardcore flashcard-style questions.
- Download the Flashcards to your Palm device and go on the road. Now you can study for the MCTS: Windows Server 2008 Active Directory, Configuring (70-640) any time, anywhere.
- CD also includes the PrepLogic's robust Audio+ exam preparation product for Exam 70-640, exclusive for Sybex Study Guides.

Get ready for your MCTS: Windows Server 2008 Active Directory, Configuration or MCITP: Enterprise or Server Administrator certifications with the most comprehensive and challenging sample tests anywhere!

The SybexTest Engine features:

- All the review questions, as covered in each chapter of the book
- Challenging questions representative of those you'll find on the real exam
- Two full-length bonus exams available only on the CD
- An Assessment Test to narrow your focus to certain objective groups

Search through the complete book in PDF!

- Search the MCTS: Microsoft Windows Server 2008 Active Directory Configuration Study Guide chapters to find information on any topic in seconds.
Try PrepLogic for FREE!

Now you can enjoy our high-speed audio training for FREE. Visit PrepLogic today for over 80 free Quiz Me & Lecture Series sample lessons for the most challenging, popular and valuable certifications including MCSE, CCNA, A+, PMP, CISSP® and more. Try PrepLogic today for Free!

www.preplogic.com/freeaudio